
A Self-Organized, Fault-Tolerant and Scalable Replication
Scheme for Cloud Storage

Nicolas Bonvin, Thanasis G. Papaioannou and Karl Aberer
School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
Email: firstname.lastname@epfl.ch

ABSTRACT
Failures of any type are common in current datacenters, partly due
to the higher scales of the data stored. As data scales up, its avail-
ability becomes more complex, while different availability levels
per application or per data item may be required. In this paper,
we propose a self-managed key-value store that dynamically allo-
cates the resources of a data cloud to several applications in a cost-
efficient and fair way. Our approach offers and dynamically main-
tains multiple differentiated availability guarantees to each differ-
ent application despite failures. We employ a virtual economy,
where each data partition (i.e. a key range in a consistent-hashing
space) acts as an individual optimizer and chooses whether to mi-
grate, replicate or remove itself based on net benefit maximization
regarding the utility offered by the partition and its storage and
maintenance cost. As proved by a game-theoretical model, no mi-
grations or replications occur in the system at equilibrium, which is
soon reached when the query load and the used storage are stable.
Moreover, by means of extensive simulation experiments, we have
proved that our approach dynamically finds the optimal resource al-
location that balances the query processing overhead and satisfies
the availability objectives in a cost-efficient way for different query
rates and storage requirements. Finally, we have implemented a
fully working prototype of our approach that clearly demonstrates
its applicability in real settings.

Categories and Subject Descriptors
H.3.2 [Information storage and retrieval]: Information Storage;
H.3.4 [Information storage and retrieval]: Systems and Soft-
ware—Distributed systems; H.2.4 [Database Management]: Sys-
tems—Distributed databases; E.1 [Data Structures]: Distributed
data structures; E.2 [Data Storage Representations]: Hash-table
representations

General Terms
Reliability, Economics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SoCC’10, June 10–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0036-0/10/06 ...$10.00.

Keywords
decentralized optimization, net benefit maximization, equilibrium,
rational strategies

1. INTRODUCTION
Cloud storage is becoming a popular business paradigm, e.g.

Amazon S3, ElephantDrive, Gigaspaces, etc. Small companies that
offer large Web applications can avoid large capital expenditures in
infrastructure by renting distributed storage and pay per use. The
storage capacity employed may be large and it should be able to
further scale up. However, as data scales up, hardware failures in
current datacenters become more frequent [22]; e.g. overheating,
power (PDU) failures, rack failures, network failures, hard drive
failures, network re-wiring and maintenance. Also, geographic
proximity significantly affects data availability; e.g., in case of a
PDU failure �500-1000 machines suddenly disappear, or in case
of a rack failure �40-80 machines instantly go down. Further-
more, data may be lost due to natural disasters, such as tornadoes
destroying a complete data center, or various attacks (DDoS, ter-
rorism, etc.). On the other hand, as [7] suggests, Internet avail-
ability varies from 95% to 99.6%. Also, the query rates for Web
applications data are highly irregular, e.g. the “Slashdot effect”
(http://en.wikipedia.org/wiki/Slashdot_effect), and an application
may become temporarily unavailable.

To this end, the support of service level agreements (SLAs) with
data availability guarantees in cloud storage is very important. More-
over, in reality, different applications may have different availabil-
ity requirements. Fault-tolerance is commonly dealt with by repli-
cation. Existing works usually rely on randomness to diversify the
physical servers that host the data; e.g. in [23], [17] node IDs
are randomly chosen, so that peers that are adjacent in the node
ID space are geographically diverse with a high probability. To
the best of our knowledge, no system explicitly addresses the geo-
graphical diversity of the replicas. Also, from the application per-
spective, geographically distributed cloud resources have to be effi-
ciently utilized to minimize renting costs associated to storage and
communication. Clearly, geographical diversity of replica locations
and communication cost are contradictory objectives. From the
cloud provider perspective, efficient utilization of cloud resources
is necessary both for cost-effectiveness and for accommodating
load spikes. Moreover, resource utilization has to be adaptive to
resource failures, addition of new resources, load variations and
the distribution of client locations.

Distributed key-value store is a widely employed service case of
cloud storage. Many Web applications (e.g. Amazon) and many
large-scale social applications (e.g. LinkedIn, Last.fm, etc.) use
distributed key-value stores. Also, several research communities
(e.g. peer-to-peer, scalable distributed data structures, databases)

study key-value stores, even as complete database solutions (e.g.
BerkeleyDB). In this paper, we propose a scattered key-value store
(referred to as “Skute"), which is designed to provide high and dif-
ferentiated data availability statistical guarantees to multiple appli-
cations in a cost-efficient way in terms of rent price and query re-
sponse times. A short four-pages overview of this work has been
described in [5]. Our approach combines the following innovative
characteristics:

� It enables a computational economy for cloud storage re-
sources.

� It provides differentiated availability statistical guarantees to
different applications despite failures by geographical diver-
sification of replicas.

� It applies a distributed economic model for the cost-efficient
self-organization of data replicas in the cloud storage that is
adaptive to adding new storage, to node failures and to client
locations.

� It efficiently and fairly utilizes cloud resources by performing
load balancing in the cloud adaptively to the query load.

Optimal replica placement is based on distributed net benefit
maximization of query response throughput minus storage as well
as communication costs, under the availability constraints. The op-
timality of the approach is proved by comparing simulation results
to those expected by numerically solving an analytical form of the
global optimization problem. Also, a game-theoretic model is em-
ployed to observe the properties of the approach at equilibrium. A
series of simulation experiments prove the aforementioned charac-
teristics of the approach. Finally, employing a fully working pro-
totype of Skute, we experimentally demonstrate its applicability in
real settings.

The rest of the paper is organized as follows: In Section 2, the
scattered key-value data store is presented. In Section 3, the global
optimization problem that we address is formulated. In Section 4,
we describe the individual optimization algorithm that we employ
to solve the problem in a decentralized way. In Section 5, we define
a game-theoretical model of the proposed mechanism and study its
equilibrium properties. In Section 6, we discuss the applicability
of our approach in an untrustworthy environment. In Section 7, we
present our simulation results on the effectiveness of the proposed
approach. In Section 8, we describe the implementation of Skute
and discuss our experimental results in a real testbed. In Section 9,
we outline some related work. Finally, in Section 10, we conclude
our work.

2. SKUTE: SCATTERED KEY-VALUE STORE
Skute is designed to provide low response time on read and write

operations, to ensure replicas’ geographical dispersion in a cost-
efficient way and to offer differentiated availability guarantees per
data item to multiple applications, while minimizing bandwidth
and storage consumption. The application data owner rents re-
sources from a cloud of federated servers to store its data. The
cloud could be a single business, i.e. a company that owns/manages
data server resources (”private“ clouds), or a broker that represents
servers that do not belong to the same businesses (”public“ clouds).
The number of data replicas and their placement are handled by a
distributed optimization algorithm autonomously executed at the
servers. Also, data replication is highly adaptive to the distribu-
tion of the query load among partitions and to failures of any kind
so as to maintain high data availability. Defining a new approach

for maintaining data consistency among replicas is not among the
objectives of this work. A potential solution could be to maintain
eventual data consistency among replicas by vector-clock version-
ing, quorum consistency mechanisms and read-repair, as in [9].

2.1 Physical node
We assume that a physical node (i.e. a server) belongs to a rack,

a room, a data center, a country and a continent. Note that finer
geographical granularity could also be considered. Each physical
node has a label of the form “continent-country-datacenter-room-
rack-server” in order to precisely identify its geographical location.
For example, a possible label for a server located in a data center in
Berlin could be “EU-DE-BE1-C12-R07-S34”.

2.2 Virtual node
Based on the findings of [12], Skute is built using a ring topology

and a variant of consistent hashing [16]. Data is identified by a key
(produced by a one-way cryptographic hash function, e.g. MD5)
and its location is given by the hash function of this key. The key
space is split into partitions. A physical node (i.e. a server) gets
assigned to multiple points in the ring, called tokens. A virtual
node (alternatively a partition) holds data for the range of keys in
(previous token; token], as in [9]. A virtual node may replicate
or migrate its data to another server, or suicide (i.e. delete its data
replica) according to a decision making process described in Sec-
tion 4.4. A physical node hosts a varying amount of virtual nodes
depending on the query load, the size of the data managed by the
virtual nodes and its own capacity (i.e. CPU, RAM, disk space,
etc.).

2.3 Virtual ring
Our approach employs the concept of multiple virtual rings on

a single cloud in an innovative way (cf. Section 9 for a compari-
son with [28]). Thus, as subsequently explained, we allow multiple
applications to share the same cloud infrastructure for offering dif-
ferentiated per data item and per application availability guarantees
without performance conflicts. The single-application case with
one uniform availability guarantee has been presented in [4]. In the
present work, each application uses its own virtual rings, while one
ring per availability level is needed, as depicted in Figure 1. Each
virtual ring consists of multiple virtual nodes that are responsible
for different data partitions of the same application that demand
a specific availability level. This approach provides the following
advantages over existing key-value stores:

1. Multiple data availability levels per application. Within the
same application, some data may be crucial and some may
be less important. In other words, an application provider
may want to store data with different availability guarantees.
Other approaches, such as [9], also argue that they can sup-
port several applications by deploying a key-value store per
application. However, as data placement for each data store
would be independent in [9], an application could severely
impact the performance of others that utilize the same re-
sources. Unlike existing approaches, Skute allows a fine-
grained control of the resources of each server, as every vir-
tual node of each virtual ring acts as an individual optimizer
(as described in Section 4.4), thus minimizing the impact
among applications.

2. Geographical data placement per application. Data that is
mostly accessed from a given geographical region should be
moved close to that region. Without the concept of virtual
rings, if multiple applications were using the same data store,

App. A App. B App. C

Applications

virtual
node virtual

ring

Availability
Level

0.1 0.0 0.2 0.3 0.9

0.6 0.5
0.4 0.7 0.8

1

2

3

4

0.1 0.0 0.2 0.3 0.9

0.6 0.5
0.4 0.7 0.8

0.1 0.0 0.2 0.3 0.9

0.6 0.5
0.4 0.7 0.8

Figure 1: Three applications with different availability levels.

data of different applications would have to be stored in the
same partition, thus removing the ability to move data close
to the clients. However, by employing multiple virtual rings,
Skute is able to provide one virtual store per application, al-
lowing the geographical optimization of data placement.

2.4 Routing
As Skute is intended to be used with real-time applications, a

query should not be routed through multiple servers before reach-
ing its destination. Routing has to be efficient, therefore every
server should have enough information in its routing table to route a
query directly to its final destination. Skute could be seen as a O(1)
DHT, similarly to [9]. Each virtual ring has its own routing entries,
resulting in potentially large routing tables. Hence, the number of
entries in the routing table is:

entries =

appsX

i

levelsiX

j

partition(i; j) (1)

where partition(i; j) returns the number of partitions (i.e. vir-
tual nodes) of the virtual ring of the availability level i belonging to
application j. However, the memory space requirement of the rout-
ing table is quite reasonable; e.g. for 100 applications, each with
3 availability levels and 5K data partitions, the necessary memory
space would be � 31:5MB, assuming that each entry consists of
22 bytes (2 bytes for application id, 1 byte for availability level, 3
bytes for the partition id and 16 bytes for the sequence of server ids
that host the partition).

A physical node is responsible to manage the routing table of
all virtual rings hosted in it, in order to minimize the update costs.
Upon migration, replication and suicide events, hierarchical broad-
cast that leverages the geographical topology of servers is employed.
This approach costs O(N), but it uses the minimum network span-
ning tree. The position of a moving virtual node (i.e. during the
migration process) is tracked by forwarding pointers (e.g. SSP
chains [25]). Also, the routing table is periodically updated using a
gossiping protocol for shortening/repairing chains or updating stale
entries (e.g. due to failures). According to this protocol, a server
exchanges with random log(N) other servers the routing entries of
the virtual nodes that they are responsible for.

Moreover, as explained in Section 5 and experimentally proved
in Section 7, no routing table updates are expected at equilibrium
with stable system conditions regarding the query load and the
number of servers. Even if a routing table contains a large num-
ber of entries, its practical maintenance is not costly thanks to the
stability of the system. The scalability of this approach is experi-
mentally assessed in a real testbed, as described in Section 8.

3. THE PROBLEM DEFINITION
The data belonging to an application is split into M partitions,

where each partition i has ri distributed replicas. We assume that
N servers are present in the data cloud.

3.1 Maximize data availability
The first objective of a data owner d (i.e. application provider)

is to provide the highest availability for a partition i, by placing
all of its replicas in a set Sdi of different servers. Data availability
generally increases with the geographical diversity of the selected
servers. Obviously, the worst solution in terms of data availability
would be to put all replicas at a server with equal or worse proba-
bility of failure than others.

We denote as Fj a failure event at server j 2 Sdi . These events
may be independent from each other or correlated. If we assume
without loss of generality that events F1 : : : Fk are independent and
that events Fk+1 : : : FjSdi j are correlated, then the probability a par-
tition i to be unavailable is given as follows:

Pr(i unavailable) = Pr(F1 \ F2 \ : : : \ FjSdi j
) =

kY

j=1

Pr(Fj) � Pr(FkjFk+1 : : : \ FjSdi j
)�

Pr(Fk+1jFk+2 \ : : : \ FjSdi j
) � : : : � Pr(FjSdi j

) ;

(2)

if Fk+1 \ Fk+2 \ : : : FjSdi j
6= �.

3.2 Minimize communication cost
While geographical diversity increases availability, it is also im-

portant to take into account communication cost among servers that
host different replicas, in order to save bandwidth during replica-
tion or migration, and to reduce latency in data accesses and dur-

ing conflict resolution for maintaining data consistency. Let
~~Ld be

a M � N location matrix with its element Ldij = 1 if a replica
of partition i of application d is stored at server j and Ldij = 0
otherwise. Then, we maximize data proximity by minimizing net-
work costs for each partition i, e.g. the total communication cost
for conflict resolution of replicas for the mesh network of servers
where the replicas of the partition i are stored. In this case, the net-
work cost cn for conflict resolution of the replicas of a partition i
of application d can be given by

cn(~Ldi) = sum(~Ldi �
~~NC � ~Ldi

T

) ; (3)

where ~~NC is a strictly upper triangular N � N matrix whose el-
ement NCjk is the communication cost between servers j and k,
and sum denotes the sum of matrix elements.

3.3 Maximize net benefit
Every application provider has to periodically pay the opera-

tional cost of each server where he stores replicas of his data parti-
tions. The operational cost of a server is mainly influenced by the
quality of the hardware, its physical hosting, the access bandwidth
allocated to the server, its storage, and its query processing and
communication overhead. The data owner wants to minimize his
expenses by replacing expensive servers with cheaper ones, while
maintaining a certain minimum data availability promised by SLAs
to his clients. He also obtains some utility u(:) from the queries
answered by its data replicas that depends on the popularity (i.e.
query load) popi of the data contained in the replica of the partition
i and the response time (i.e. processing and network latency) asso-
ciated to the replies. The network latency depends on the distance

of the clients from the server that hosts the data, i.e. the geograph-
ical distribution G of query clients. Overall, he seeks to maximize
his net benefit and the global optimization problem can be formu-
lated as follows:

maxfu(popi; G)� ~Ldi ~c
T + cn(~Ldi)g, 8i; 8d

s.t.

1� Pr(F
Ld
i1

1 \ F
Ld
i2

2 \ : : : F
Ld
iN

N) � thd ;

(4)

where ~c is the vector of operational costs of servers with its element
cj being an increasing function of the data replicas of the various
applications located at server j. This also accounts for the fact that
the processing latency of a server is expected to increase with the
occupancy of its resources. F 0

j for a particular partition denotes
that the partition is not present at server j and thus the correspond-
ing failure event at this server is excluded from the intersection and
thd is a certain minimum availability threshold promised by the
application provider d to his clients. This constrained global opti-
mization problem takes 2M�N possible solutions for every applica-
tion and it is feasible only for small sets of servers and partitions.

4. THE INDIVIDUAL OPTIMIZATION
The data owner rents storage space located in several data centers

around the world and pays a monthly usage-based real rent. Each
virtual node is responsible for the data in its key range and should
always try to keep data availability above a certain minimum level
required by the application while minimizing the associated costs
(i.e. for data hosting and maintenance). To this end, a virtual node
can be assumed to act as an autonomous agent on behalf of the
data owner to achieve these goals. Time is assumed to be split into
epochs. A virtual node may replicate or migrate its data to another
server, or suicide (i.e. delete its data replica) at each epoch and pay
a virtual rent (i.e. an approximation of the possible real rent, de-
fined later in this section) to servers where its data are stored. These
decisions are made based on the query rate for the data of the vir-
tual node, the renting costs and the maintenance of high availability
upon failures. There is no global coordination and each virtual node
behaves independently. Only one virtual node of the same partition
is allowed to suicide at the same epoch by employing Paxos [18]
distributed consensus algorithm among virtual nodes of the same
partition. The virtual rent of each server is announced at a board
and is updated at the beginning of a new epoch.

4.1 Board
At each epoch, the virtual nodes need to know the virtual rent

price of the servers. One server in the network is elected (i.e. by a
leader election distributed protocol) to store the current virtual rent
per epoch of each server. The election is performed at startup and
repeated whenever the elected server is not reachable by the major-
ity. Servers communicate to the central board only their updated
virtual prices. This centralized approach achieves common knowl-
edge for all virtual nodes in decision making (cf. the algorithm of
Section 4.4), but: i) it assumes trustworthiness of the elected server,
ii) the elected server may become a bottleneck.

An alternative approach would be that each server maintains its
own local board and periodically updates the virtual prices of a ran-
dom subset (log(N)) of servers by contacting them directly (i.e.
gossiping), having as N the total number of servers. This approach
does not have the aforementioned problems, but decision making
of virtual nodes is based on potentially outdated information on
the virtual rents. This fully decentralized architecture has been ex-
perimentally verified in a real testbed to be very efficient without
creating high communication overhead (cf. Section 8).

When a new server is added to the network, the data owner es-
timates its confidence based on its hardware components and its
location. This estimation depends on technical factors (e.g. redun-
dancy, security, etc.) as well as non-technicals ones (e.g. political
and economical stability of the country, etc.) and it is rather sub-
jective. Confidence values of servers are stored at the board(s) in a
trustworthy setting, while they can be stored at each virtual node in
case that trustworthiness is an issue. Note that asking for detailed
information on the server location is already done by large compa-
nies that rent dedicated servers, e.g. theplanet.com. The potential
insincerity of the server for its location could be conveyed in its
confidence value based on its offered availability and performance.

4.2 Physical node
The virtual rent price c of a physical node for the next epoch is

an increasing function of its query load and its storage usage at the
current epoch and it can be given by:

c = up � (storage_usage+ query_load) ; (5)

where up is the marginal usage price of the server, which can be
calculated by the total monthly real rent paid by virtual nodes and
the mean usage of the server in the previous month. We consider
that the real rent price per server takes into account the network cost
for communicating with the server, i.e. its access link. To this end,
it is assumed that access links are going to be the bottleneck ones
along the path that connects any pair of servers and thus we do not
take explicitly into account distance between servers. Multiplying
the real rent price with the query load satisfies the network proxim-
ity objective. The query load and the storage usage at the current
epoch are considered to be good approximations of the ones at the
next epoch, as they are not expected to change very often at very
small time scales, such as a time epoch. The virtual rent price per
epoch is an approximation of the real monthly price that is paid by
the application provider for storing the data of a virtual node. Thus,
an expensive server tends to be also expensive in the virtual econ-
omy. A server agent residing at the server calculates its virtual rent
price per epoch and updates the board.

4.3 Maintaining availability
A virtual node always tries to keep the data availability above a

minimum level th (i.e. the availability level of the corresponding
virtual ring), as specified in Section 3. As estimating the probabil-
ities of each server to fail necessitates access to an enormous set
of historical data and private information of the server, we approx-
imate the potential availability of a partition (i.e. virtual node) by
means of the geographical diversity of the servers that host its repli-
cas. Therefore, the availability of a partition i is defined as the sum
of diversity of each distinct pair of servers, i.e.:

availi =

jSijX

i=0

jSijX

j=i+1

confi � confj � diversity(si; sj) (6)

where Si = (s1; s2; : : : ; sn) is the set of servers hosting replicas
of the virtual node i and confi, confj 2 [0; 1] are the confidence
levels of servers i, j. The diversity function returns a number calcu-
lated based on the geographical distance among each server pairs.
This distance is represented as a 6 bit number, each bit correspond-
ing to the location parts of a server, namely continent, country, data
center, room rack and server. Note that more bits would be required
to represent additional geographical location parts than those con-
sidered. The most significant bit (leftmost) represents the conti-
nent while the least significant bit (rightmost) represents the server.

Starting with the most significant bit, each location part of both
servers are compared one by one to compute their similarity: if the
location parts are equivalent, the corresponding bit is set to 1, oth-
erwise 0. Once a bit has been set to 0, all less significant bits are
also set to 0. For example, two servers belonging to the same data
center but located in different rooms cannot be in the same rack,
thereby all bits after the third bit (data center) have to be 0. The
similarity number would then look like this:

cont coun data room rack serv
1 1 1 0 0 0

A binary “NOT” operation is then applied to the similarity to get
the diversity value:

111000 = 000111 = 7(decimal)

The diversity values of server pairs are summed up, because having
more replicas in distinct servers located even in the same location
always results in increased availability.

When the availability of a virtual node falls below th, it repli-
cates its data to a new server. Note that a virtual node can know
the locations of the replicas of its partition by the routing table of
its hosting server and thus calculate its availability according to 6.
The best candidate server is selected so as to maximize the net ben-
efit between the diversity of the resulting set of replica locations
for the virtual node and the virtual rent of the new server. Also, a
preference weight is associated to servers according to their loca-
tion proximity to the geographical distribution G of query clients
for the partition. G is approximated by the virtual node by storing
the number of client queries per location. Thus, the availability is
increased as much as possible at the minimum cost, while the net-
work latency for the query reply is decreased. Specifically, a virtual
node i with current replica locations in Si maximizes:

arg
j

max

jSijX

k=1

gj � confj � diversity(sk; sj)� cj ; (7)

where cj is the virtual rent price of candidate server j. gj is a
weight related to the proximity (i.e. inverse average diversity) of
the server location to the geographical distribution of query clients
for the partition of a virtual node and is given by:

gj =

P
l ql

1 +
P

l ql � diversity(l; sj)
; (8)

where ql is the number of queries for the partition of the virtual
node per client location l. To this end, we assume that the client
locations are encoded similarly to those of servers. In fact, if client
requests reach the cloud by the geographically nearest cloud node
to the client (e.g. by employing geoDNS), we can take the location
of this cloud node as the client location. However, having virtual
nodes to choose the destination server j for replication according
to (7) would render j a bottleneck for the next epoch. Instead, the
destination server is randomly chosen among the top-k ones that
are ranked according to the maximized quantity in (7).

The minimum availability level th allows a fine-grained control
over the replication process. A low value means that a partition
will be replicated on few servers potentially geographically close,
whereas a higher value enforces many replicas to be located at dis-
persed locations. However, setting a high value for the minimum
level of availability in a network with a few servers can result in
an undesirable situation, where all partitions are replicated every-
where. To circumvent this, a maximum number of replicas per
virtual node is allowed.

4.4 Virtual node decision tree
As already mentioned, a virtual node agent may decide to repli-

cate, migrate, suicide or do nothing with its data at the end of an
epoch. Note that decision making of virtual nodes does not need
to be synchronized. Upon replication, a new virtual node is asso-
ciated with the replicated data. The decision tree of a virtual node
is depicted in Figure 2. First, it verifies that the current availability
of its partition is greater than th. Note If the minimum accept-
able availability is not reached, the virtual node replicates its data
to the server that maximizes availability at the minimum cost, as
described in Subsection 4.3.

If the availability is satisfactory, the virtual node agent tries to
minimize costs. During an epoch, virtual nodes receive queries,
process them and send the replies back to the client. Each query
creates a utility value for the virtual node, which can be assumed to
be proportional to the size of the query reply and inversely propor-
tional to the average distance of the client locations from the server
of the virtual node. For this purpose, the balance (i.e. net benefit) b
for a virtual node is defined as follows:

b = u(pop; g)� c ; (9)

where u(pop; g) is assumed to be the epoch query load of the par-
tition with a certain popularity pop divided by the proximity g (as
defined in (8)) of the virtual node to the client locations and nor-
malized to monetary units, and c is the virtual rent price. To this
end, a virtual node decides to:

� migrate or suicide: if it has negative balance for the last f
epochs. First, the virtual node calculates the availability of
its partition without its own replica. If the availability is sat-
isfactory, the virtual node suicides, i.e. deletes its replica.
Otherwise, the virtual node tries to find a less expensive (i.e.
busy) server that is closer to the client locations (according
to maximization formula (7)). To avoid a data replica os-
cillation among servers, the migration is only allowed if the
following migration conditions apply:

– The minimum availability is still satisfied using the new
server,

– the absolute price difference between the current and
the new server is greater than a threshold,

– the current server storage usage is above a storage soft
limit, typically 70% of the hard drive capacity, and the
new server is below that limit.

� replicate: if it has positive balance for the last f epochs, it
may replicate. For replication, a virtual node has also to ver-
ify that:

– It can afford the replication by having a positive balance
b0 for consecutive f epochs:

b
0 = u(pop; g)� cn � 1:2 � c0

where cn is a term representing the consistency (i.e.
network) cost, which can be approximated as the num-
ber of replicas of the partition times a fixed average
communication cost parameter for conflict resolution
and routing table maintenance. c0 is the current virtual
rent of the candidate server for replication (randomly
selected among the top-k ones ranked according to the
formula (7)), while the factor 1.2 accounts for an up-
per bounded 20% increase at this rent price at the next
epoch due to the potentially increased occupied storage

and query load of the candidate server. This action aims
to distribute to load of the current server towards one
located closer to the clients. Thus, it tends to decrease
the processing and network latency of the queries for
the partition.

– the average bandwidth consumption bdwr for the an-
swering queries per replica after replication (left term
of left side of inequality (10)) plus the size ps of the
partition is less than the respective bandwidth bdw per
replica without replication (right side of inequality (10))
for a fixed number win of epochs to compensate for
steep changes of the query rate. A large win value
should be used for bursty query load. Specifically, the
virtual node replicates if:

win � q � qs
jSij+ 1

+ ps <
win � q � qs

jSij
; (10)

where q is the average number of queries for the last
win epochs, qs is the average size of the replies, jSij
is the number of servers currently hosting replicas of
partition i and ps is the size of the partition.

At the end of a time epoch, the virtual node agent sets lowest
utility value u(pop; g) to the current lowest virtual rent price of the
server to prevent unpopular nodes from migrating indefinitely.

A virtual node that either gets a large number of queries or has to
provide large query replies becomes wealthier. At the same time,
the load of its hosting server will increase, as well as the virtual rent
price for the next epoch. Popular virtual nodes on the server will
have enough “money" to pay the growing rent price, as opposed
to unpopular ones that will have to move to a cheaper server. The
transfer of unpopular virtual nodes will in turn decrease the virtual
rent price, hence stabilizing the rent price of the server. This ap-
proach is self-adaptive and balances the query load by replicating
popular virtual nodes.

5. EQUILIBRIUM ANALYSIS
First, we find the expected payoffs of the actions of a virtual

node, as described in our mechanism. Assume that M is the orig-
inal number of partitions (i.e. virtual nodes) in the system. These
virtual nodes may belong to the same or to different applications
and compete to each other. Time is assumed to be slotted in rounds.
At each round, a virtual node (which is either responsible for an
original partition or a replica of the partition) is able to migrate,
replicate, suicide (i.e. delete itself) or do nothing (i.e. stay) com-
petitively to other virtual nodes at a repeated game. The expected
single round strategy payoffs at round t+ 1 by the various actions
made at round t of the game for a virtual node i are given by:

� Migrate: EVM =
u
(t)
i

r
(t)
i

� f ic � f id � r
(t)
i � C

(t+1)
c

� Replicate:

EVR =
u
(t)
i

+a
(t)
i

r
(t)
i

+1
�f ic�f id(r

(t)
i +1)� 1

2
(C

(t+1)
c +C

(t+1)
e)

� Suicide: EVD = 0

� Stay: EVS =
u
(t)
i

r
(t)
i

� f idr
(t)
i � C

(t+1)
e

Figure 2: Decision tree of the virtual node agent.

u
(t)
i is the utility gained by the queries served by the partition for

which virtual node i is responsible and only depends on its popu-
larity at round t; for simplicity and without loss of generality, we
assume that clients are geographically uniformly distributed. To
this end, a virtual node expects that this popularity will be main-
tained at the next round of the game. r(t)i is the number of replicas
of virtual node i at round t. C(t+1)

c is the expected price at round
t + 1 of the cheapest server at round t. Note that it is a domi-
nant strategy for each virtual node to select the cheapest server to
migrate or replicate to, as any other choice could be exploited by
competitive rational virtual nodes. f id is the mean communication
cost per replica of virtual node i for data consistency, f ic is the
communication cost for migrating virtual node i, a(t)i is the util-
ity gain due to the increased availability of virtual node i when a
new replica is created, and C(t+1)

e is the price at round t+1 of the
current hosting server at round t, therefore C(t)

e > C
(t)
c . In case

of replication, two virtual nodes will henceforth exist in the sys-
tem, having equal expected utilities, but the old one paying C(t+1)

e

and the new one paying C(t+1)
c . In the aforementioned formula of

EVR, we calculate the expected payoff per copy of the virtual node
after replication.

Notice that EVR is expected to be initially significantly above
0, as the initial utility gain a from availability should be large in
order the necessary replicas to be created. Also, if the virtual price
difference among servers is initially significant, then EVM �EVS
will be frequently positive and virtual nodes will migrate towards
cheaper servers. As the number of replicas increases, a decreases
(and eventually becomes a small constant close to 0 after the re-
quired availability is reached) and thus EVR decreases. Also, as
price difference in the system is gradually balanced, the difference
EVM � EVS becomes more frequently negative, so fewer migra-
tions happen. On the other hand, if the popularity (i.e. query load)
of a virtual node is significantly deteriorated (i.e. u decreases),

while its minimum availability is satisfied (i.e. a is close to 0), then
it may become preferable for a virtual node to commit suicide.

Next, we consider the system at equilibrium and that the system
conditions, namely the popularity of virtual nodes and the num-
ber of servers, remain stable. If we assume that each virtual node
i plays a mixed strategy among his pure strategies, specifically it
plays migrate, replicate, suicide and stay with probabilities x, y, z
and 1� x� y � z respectively, then we calculate C(t+1)

c , C(t+1)
e

as follows:

C
(t+1)
c = C

(t)
c [1 + (x+ y)

PM

i=1 r
(t)
i] (11)

C
(t+1)
e = C

(t)
e [1� (x+ z + �y)] (12)

In equation (11), we assume that the price of the cheapest server at
the next time slot increases linearly to the number of replicas that
are expected to have migrated or replicated to that server until the
next time slot. Also, in equation (12), we assume that the expected
price of the current server at the next time slot decreases linearly
to the fraction of replicas that are expected to abandon this server
or replicate until the next time slot. 0 < � << 1 is explained as
follows: Recall that the total number of queries for a partition is di-
vided by the total number of replicas of that partition and thus repli-
cation also reduces the rent price of the current server. However,
the storage cost for hosting the virtual node remains and, as the
replicas of the virtual node in the system increase, it becomes the
dominant cost factor of the rent price of the current server. There-
fore, replication only contributes to C

(t+1)
e in a limited way, as

shown in equation (12). Note that any cost function (e.g. a con-
vex one, as storage is a constrained resource) could be used in our
equilibrium analysis, as long as it was increasing to the number of
replicas, which is a safe assumption.

Henceforth, for simplicity, we drop i indices as we deal only
with one virtual node. Recall that the term a becomes close to 0
at equilibrium. Then, the replicate strategy is dominated by the
migrate one, and thus y = 0. Also, the suicide strategy has to be
eventually dominated by the migrate and stay strategies, because
otherwise every virtual node would have have the incentive to leave
the system; thus z = 0. Therefore, the number r of replicas of a
virtual node becomes fixed at equilibrium and the total sum Nr of
the replicas of all virtual nodes in the cloud is also fixed. As y =
z = 0 at equilibrium, the virtual node plays a mixed strategy among
migrate and stay with probabilities x and 1 � x respectively. The
expected payoffs of these strategies should be equal at equilibrium,
as the virtual node should be indifferent between them:

EVM = EVS ,
u

r
� fc � fd r � Cc(1 + x Nr) =

u

r
� fd r � Ce(1� x),

x =
Ce � Cc � fc

Ce + Cc Nr

(13)

The nominator of x says that in order for any migrations to happen
in the system at equilibrium the rent of the current server used by
a virtual node should exceed the rent of the cheapest server more
than the cost of migration for this virtual node. Also, the proba-
bility to migrate decreases with the total number of replicas in the
system. Considering that each migration decreases the average vir-
tual price difference in the system, then the number of migrations
at equilibrium will be almost 0.

6. RATIONAL STRATEGIES
We have already accounted for the case that virtual nodes are ra-

tional, as we have considered them to be individual optimizers. In

this section, we consider the rational strategies that could be em-
ployed by servers in an untrustworthy environment. No malicious
strategies are considered, such as tampering with data, data delib-
erate destruction or theft, because standard cryptographic meth-
ods (e.g. digital signatures, digital hashes, symmetric encryption
keys) could easily alleviate them (at a performance cost) and the
servers would have legal consequences if discovered employing
them. Such cryptographic methods should be employed in a real
untrustworthy environment, but we refrain from further dealing
with them in this paper. However, rational servers could have the
incentive to lie about their virtual prices, so that they do not re-
flect the actual usage of their storage and bandwidth resources.
For example, a server may overutilize its bandwidth resources by
advertising a lower virtual price (or equivalently a lower band-
width utilization) than the true one and increase its profits by being
paid by more virtual nodes. At this point, recall that the applica-
tion provider pays a monthly rent per virtual node to each server
that hosts its virtual nodes. In case of server overutilization, some
queries to the virtual nodes of the server would have to be buffered
or even dropped by the server. Also, one may argue that a server
can increase its marginal usage price on will in this environment,
which then is used to calculate the monthly rent of a virtual node.
This is partly true, despite competition among servers, as the total
actual resource usage of a server per month cannot be easily esti-
mated by individual application providers.

The aforementioned rational strategies could be tackled as fol-
lows: In Section 4, we assumed that virtual nodes assign to servers
a subjective confidence value based on the quality of the resources
of the servers and their location. In an untrustworthy environment,
the confidence value of a server could also reflect its trustwor-
thiness for reporting its utilization correctly. This trustworthiness
value could be effectively approximated by the application provider
by means of reputation based on periodical monitoring of the per-
formance of servers to own queries. The aforementioned rational
strategies are common in everyday transactions among sellers and
buyers, but in a competitive environment, comparing servers based
on their prices and their offered performance provides them with
the right incentives for truthful reporting [10]. Therefore, in a cloud
with rational servers, application providers should divide cj by the
confidence confj of the server j in the maximization formula (7),
in order to provide incentives to servers to refrain from employing
the aforementioned strategies.

7. SIMULATION RESULTS

7.1 The simulation model
We assume a simulated cloud storage environment consisting of

N servers geographically distributed according to different scenar-
ios that are explained on a per case basis. Data per application
is assumed to be split into M partitions having each represented
by a virtual node. Each server has fixed bandwidth capacities for
replication and migration per epoch. They also have a fixed band-
width capacity for serving queries and a fixed storage capacity. All
servers are assumed to be assigned the same confidence. The popu-
larity of the virtual nodes (i.e. the query rate) is distributed accord-
ing to Pareto(1, 50). The number of queries per epoch is Poisson
distributed with a mean rate �, which is different per experiment.
For facilitating the comparison of the simulation results with those
of the analytical model of Section 3, the geographical distribution
of query clients is assumed to be Uniform and thus gj is 1 for any
server j. The size of every data partition is assumed to be fixed and
equal to 256MB. Time is considered to be slotted into epochs. At
each epoch, virtual nodes employ the decision making algorithm of

Subsection 4.4. Note that decision making of virtual nodes is not
synchronized. Each server updates its available bandwidth for mi-
gration, replication or answering queries, and its available storage
after every data transfer that is decided to happen within one epoch.
Previous data migrations and replications are taken into account in
the next epoch. The virtual price per server is determined according
to formula (5) at the beginning of each epoch.

7.2 Convergence to equilibrium and optimal
solution

We first consider a small scale scenario to validate our results
solving numerically the optimization problem of Section 3. Specif-
ically, we consider a data cloud consisting of N = 5 servers dis-
persed in Europe: two servers are hosted in Switzerland in separate
data centers, one in France and two servers are hosted in Germany
in the same rack of the same data center. Data belongs to two ap-
plications and it is split into M = 50 partitions per application that
are randomly shared among servers at startup. The mean query rate
is � = 300 queries per epoch. The minimum availability level in
the simulation model is configured so as to ensure that each par-
tition of the first (resp. second) application is hosted by at least 2
(resp. 4) servers located at different data centers. In the analyti-
cal model of Section 3, we assume that each server has probability
0.3 to fail and that the failure probabilities of the first 3 server are
independent, while those of the Germany data centers are corre-
lated, so as Pr[F4jF5] = Pr[F5jF4] = 0:5. We set th1 = 0:9 for
the first application and th2 = 0:985 for the second application.
Only network-related operational costs (i.e. access links) are con-
sidered the dominant factor for the communication cost and thus
distance of servers is not taken into account in decision making;
therefore we assume cn = 0, in both the simulation and the ana-
lytical model. The same confidence is assigned to all servers in the
simulation model. The monthly operational cost c of each server is
assumed to be 100$. Also, as the geographical distribution of query
clients is assumed to be Uniform, the utility function in the analyt-
ical model only depends on the popularity popi of the virtual node
i and is taken equal to 100 � popi. The detailed parameters of this
experiment are shown in the left column (small scale) of Table 1.

Table 1: Parameters of small-scale and large-scale experiments.
Parameter Small scale Large scale

Servers 5 200

Server storage 10 GB 10 GB

Server price 100$ 100$ (70%), 125$ (30%)

Total data 10 GB 100 GB

Average size of an item 500 KB 500 KB

Partitions 50 10000

Queries per epoch Poisson (λ = 300) Poisson (λ = 3000)

Query key distribution Pareto (1,50) Pareto (1,50)

Storage soft limit 0.7 0.7

Win 20 100

Replication bandwidth 300 MB/epoch 300 MB/epoch

Migration bandwidth 100 MB/epoch 100 MB/epoch

As depicted in Figure 3, the virtual nodes start replicating and
migrating to other servers and the system soon reaches equilibrium,
as predicted in Section 5. The convergence process actually takes
only about 8 epochs, which is very close to the communication
bound for replication (i.e. total data size / replication bandwidth
= 10GB / 1.5GB per epoch� 6:6 epochs). Also, as revealed by
comparing the numerical solution of the optimization problem of
Section 3 with the one that is given by simulation experiments, the
proposed distributed economic approach solves rather accurately
the optimization problem. Specifically, the average number of vir-

0 5 10 15
10

20

30

40

50

Amount of virtual node per server over time

Epoch

V
irt

ua
l n

od
e

App A: EU−CH−GVA−CO1−R11−S1

App A: EU−CH−ZUR−CO2−R22−S2

App A: EU−FR−PAR−CO3−R33−S3

App A: EU−DE−BER−CO4−R44−S4

App A: EU−IT−ROM−CO5−R55−S5

App B: EU−CH−GVA−CO1−R11−S1

App B: EU−CH−ZUR−CO2−R22−S2

App B: EU−FR−PAR−CO3−R33−S3

App B: EU−DE−BER−CO4−R44−S4

App B: EU−IT−ROM−CO5−R55−S5

Figure 3: Small-scale scenario: replication process at startup.

Figure 4: Large-scale scenario: robustness against upgrades
and failures.

tual nodes of either application per server were the same and the
distributions of virtual nodes of either application per server were
similar.

7.3 Server arrival and failure
Henceforth, we consider a more realistic large-scale scenario of

M = 10000 partitions and N = 200 servers of different real rents.
Now, data belongs to three different applications. The desired avail-
ability levels for applications 1, 2, 3 pose a requirement for a mini-
mum number of 2, 3, 4 replicas respectively in the data store. One
virtual ring is employed per application. Servers are shared among
10 countries with 2 datacenters per country, 1 room per datacenter,
2 racks per room, and 5 servers per rack. The other parameters of
this experiment are shown in the right column (large-scale) of Ta-
ble 1. At epoch 100, we assume that 30 new servers are added to
the data cloud, while 30 random servers are removed at epoch 200.
As depicted in Figure 4, our approach is very robust to resource up-
grading or failures: the total number of virtual nodes remains con-
stant after adding resources to the data cloud and increases upon
failure to maintain high availability. Note that the average number
of virtual nodes per server decreases after resource upgrading, as
the same total number of virtual nodes is shared among a larger
number of servers.

7.4 Adaptation to the query load
Next, in order to show the adaptability of the store to the query

load, we simulate a load peak similar to what it would result with
the “Slashdot effect”: in a short period the query rate gets mul-
tiplied by 60. Hence, at epoch 100 the mean rate of queries per
epoch increases from 3000 to 183000 in 25 epochs and then slowly
decreases for 250 epochs until it reaches the normal rate of 3000

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

Average amount of virtual nodes per server

Epoch

N
um

be
r

of
 v

irt
ua

l n
od

es

Figure 5: Large-scale scenario: total amount of virtual nodes
in the system over time.

0 50 100 150 200 250 300 350 400 450 500
0

500

1000
Virtual Ring 0 (1/3 of total load, 2 replicas)

0 50 100 150 200 250 300 350 400 450 500
0

500

1000
Virtual Ring 1 (1/3 of total load, 3 replicas)

N
um

be
r

of
 r

eq
ue

st
s

0 50 100 150 200 250 300 350 400 450 500
0

500

1000
Virtual Ring 2 (1/3 of total load, 4 replicas)

Epoch

Average query load per server

200 servers (1/3: 125$, 2/3: 100$), max load = 183K requests/epoch

Figure 6: Large scale scenario: average query load per vir-
tual ring per server over time when the queries are evenly dis-
tributed among applications.

queries per epoch. The other parameters of this experiment are
those of the large-scale scenario of Table 1. Following the Pareto
distribution properties, a small amount of virtual nodes are respon-
sible for a large amount of queries. These virtual nodes become
wealthier thanks to their high popularity, and they are able to repli-
cate to one or several servers in order to handle the increasing load.
Therefore, the total amount of virtual nodes is adjusted to the query
load, as depicted in Figure 5. The number of virtual nodes re-
mains almost constant during the high query load period. This is
explained as follows: For robustness, replication is only initiated by
a high query load. However, a replicated virtual node can survive
even with a small number of requests before committing suicide.
Therefore, the number of virtual nodes decreases when the query
load is significantly reduced. Finally, at epoch 375, the balance of
the additional replicated virtual nodes becomes negative and they
commit suicide. More importantly, the query load per server re-
mains quite balanced despite the variations in the total query load.
This is true both for the case that the query load is evenly distributed
among applications (see Figure 6) and for the case that 4/7, 2/7 and
1/7 fractions of the total query load are attracted by application 1
(virtual ring 0), 2 (virtual ring 1) and 3 (virtual ring 2) respectively
(see Figure 7).

0 50 100 150 200 250 300 350 400 450 500
0

500

1000
Virtual Ring 0 (4/7 of total load, 2 replicas)

0 50 100 150 200 250 300 350 400 450 500
0

500

1000
Virtual Ring 1 (2/7 of total load, 3 replicas)

N
um

be
r

of
 r

eq
ue

st
s

0 50 100 150 200 250 300 350 400 450 500
0

500

1000
Virtual Ring 2 (1/7 of total load, 4 replicas)

Epoch

Average query load per server

200 servers (1/3: 125$, 2/3: 100$), max load = 183K requests/epoch

Figure 7: Large-scale scenario: average query load per virtual
ring per server over time when 4/7, 2/7, 1/7 of the queries are
attracted by application 1, 2, 3 respectively.

0 20 40 60 80 100
0

20

40

60

80

100
Insert failures

Total cloud storage capacity used (in %)

In
se

rt
 fa

ilu
re

s
(in

 %
)

Figure 8: Storage saturation: insert failures

7.5 Scalability of the approach
Initially, we investigate the scalability of the approach regarding

the storage capacity. For this purpose, we assume the arrival of in-
sert queries that store new data into the cloud. The insert queries are
again distributed according to Pareto(1, 50). We allow a maximum
partition capacity of 256MB after which the data of the partition is
split into two new ones, so that each virtual node is always respon-
sible for up to 256MB of data. The insert query rate is fixed and
equal to 2000 queries per epoch, while each query inserts 500KB
of data. We employ the large-scale scenario parameters, but with
the number of servers N = 100 and 2 racks per room in this case.
The initial number of partitions is M = 200. We fill the cloud up
to its total storage capacity. As depicted in Figure 8, our approach
manages to balance the used storage efficiently and fast enough so
that there are no data losses for used capacity up to 96% of the total
storage. At that point, virtual nodes start not fitting to the available
storage of the individual servers and thus they cannot migrate to
accommodate their data.

Next, we consider that the query rate to the cloud is not dis-
tributed according to Poisson, but it increases with the rate of 200
queries per epoch until the total bandwidth capacity of the cloud
is saturated. In this experiment, real rents of servers are uniformly
distributed in [1, 100]$. Now, our approach for selecting the desti-

0 10 20 30 40 50 60 70 80 90 100 110
−5

0

5

10

15
Increasing query rate until full cloud network capacity

T
ot

al
 fa

ilu
re

s
(in

 %
)

0 10 20 30 40 50 60 70 80 90 100 110

0

20

40

0 10 20 30 40 50 60 70 80 90 100 110
−5

0

5

10

Total cloud bandwidth used (in %)

random

greedy

economic

Figure 9: Network saturation: query failures

nation server of a new replica is compared against two other rather
basic approaches:

� Random: a random server is selected for replication and mi-
gration, as long as it has the available bandwidth capacity for
migration and replication, and enough storage space.

� Greedy: the cheapest server is selected for replication and
migration, as long as it has the available bandwidth capacity
for migration and replication, and enough storage space.

As depicted in Figure 9, our approach (referred to as “economic")
outperforms the simple approaches regarding the amount of dropped
queries having the bandwidth of the cloud completely saturated.
Specifically, only 5% of the total queries are dropped at this worst
case scenario. Therefore, our approach multiplexes the resources
of the cloud very efficiently.

8. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS IN A REAL TESTBED

We have implemented a fully working prototype of Skute on top
of Project Voldemort (project-voldemort.com), which is an open
source implementation of Dynamo [9] written in Java. Servers are
not synchronized and no centralized component is required. The
epoch is considered to be equal to 30 seconds. We have imple-
mented a fully decentralized board based on a gossiping protocol,
where each server exchanges its virtual rent price periodically with
a small (log(N), where N is the total number of servers) random
subset of servers. Routing tables are maintained using a similar
gossiping protocol for routing entries. The periods of these gos-
siping protocols are assumed to be 1 epoch. In case of migration,
replication or suicide of a virtual node, the hosting server broad-
casts the routing table update using a distribution tree leveraging
the geographical topology of the servers.

Our testbed consists of N = 40 Skute servers, hosted by 8 ma-
chines (OS: Debian 5.0.3, Kernel: 2.6.26-2-amd64, CPU: 8 core
Intel Xeon CPU E5430 @ 2.66GHz, RAM: 16GB) with Sun Java
64-Bit VMs (build 1.6.0_12-b04) and connected in a 100 Mbps
LAN. According to our scenario, we assume a Skute data cloud
spanning across 4 European countries with 2 datacenters per coun-
try. Each datacenter is hosted by a separate machine and contains 5

1800 1900 2000 2100 2200 2300 2400 2500 2600
0

5

10

15

x 104 Control and Application Traffic

Time (sec)

D
at

a
tr

an
sf

er
re

d
(K

B
)

Control

Application

1800 1900 2000 2100 2200 2300 2400 2500 2600
120

120.5

121
Average Virtual Rent per Server

Time (sec)

V
irt

ua
l R

en
t

replication

Figure 10: Top: Application and control traffic in case of a load
peak. Bottom: Average virtual rent in case of a load peak.

Skute servers, which are considered to be at the same rack. We con-
sider 3 applications, each of M = 50 partitions, with a minimum
required availability of 2, 3 and 4 replicas respectively. 250000
data items of 10KB have been evenly inserted in the 3 applications.
We generate 100 data requests per second using a Pareto(1,50) key
distribution, denoted as application traffic. We refer as control traf-
fic to the data volume transferred for migrations, replications and
the maintenance of the boards as well as the routing tables.

We first evaluate the behavior of the system in case of a load
peak. At second 1980, additional 100 requests per second are gen-
erated for a unique key. After 100 seconds, at second 2080, the
popular virtual node hosting this unique key is replicated, as shown
by the peak in the control traffic in Figure 10(top). Moreover, as de-
picted in Figure 10(bottom), the average virtual rent price increases
during the load peak, as more physical resources are required to
serve the increased number of requests. It further increases after
the replication of the popular virtual node, because more storage is
used at a server for hosting the new replica of the popular partition.

Next, the behavior of the system in case of a server crash is as-
sessed. At second 2800, a Skute server collapses. As soon as the
virtual nodes detect the failure (by means of the gossiping proto-
cols), they start replicating the partitions hosted on the failed Skute
server to satisfy again the minimum availability guarantees. Fig-
ure 11(top) shows that the replication process (as revealed by the
increased control traffic) starts directly after the crash. Moreover,
as depicted in Figure 11(bottom), the average virtual rent increases
during the replication process, because the same storage and pro-
cessing requirements as before the crash, have to be now satisfied
by fewer servers.

Finally, note that in every case and especially when the system
is at equilibrium the control traffic is minimal as compared to the
application one.

9. RELATED WORK
Dealing with network failure, strong consistency (which databases

care of) and high data availability can not be achieved at the same
time [3]. High data availability by means of replication has been
investigated in various contexts, such as P2P systems [23, 17],
data clouds, distributed databases [21, 9] and distributed file sys-
tems [13, 24, 1, 11]. In the P2P storage systems PAST [23] and

2600 2800 3000 3200 3400 3600
0

2

4

6

8

x 104 Control and Application Traffic

Time (sec)

D
at

a
tr

an
sf

er
re

d
(K

B
)

2600 2800 3000 3200 3400 3600
120

121

122

123
Average Virtual Rent per Server

Time (sec)

V
irt

ua
l R

en
t

Control

Applicationserver crash

 40 servers 39 servers

Figure 11: Top: Application and control traffic in case of a
server crash. Bottom: Average virtual rent in case of a server
crash.

Oceanstore [17], the geographical diversity of the replicas is based
on random hashing of data keys. Oceanstore deals with consistency
by serializing updates on replicas and then applying them atomi-
cally. In the distributed databases and systems context, Coda [24],
Bayou [21] and Ficus [13] allow disconnected operations and are
resilient to issues, such as network partitions and outages. Conflicts
among replicas are dealt with different approaches that guarantee
event causality. In distributed data clouds, Amazon Dynamo [9]
replicates each data item at a fixed number of physically distinct
nodes. Dynamo deals with load balancing by assuming the uni-
form distribution of popular data items among nodes through par-
titioning. However, load balancing based on dynamic changes of
query load are not considered. Data consistency is handled based
on vector clocks and a quorum system approach with a coordinator
for each data key. In all the aforementioned systems, replication is
employed in a static way, i.e. the number of replicas and their lo-
cation are predetermined. Also, no replication cost considerations
are taken into account and no geographical diversity of replicas is
employed.

In [28], data replicas are organized in multiple rings to achieve
query load-balancing. However, only one ring is materialized (i.e.
has a routing table) and the other rings are accessible by iteratively
applying a static hash function. This static approach for mapping
replicas to servers does not allow to perform advanced optimiza-
tions, such as moving data close to the end user or ensuring the ge-
ographical diversity between replicas. Moreover, as opposed to our
approach, the system in [28] does not support a different availabil-
ity level per application or per data item, while the data belonging
to different applications is not separately stored.

Some economic-aware approaches are dealing with the optimal
locations of replicas. Mariposa [27] aims at latency minimization
in executing complex queries over relational distributed databases,
i.e. not primary-key access queries on which we focus. Sites in
Mariposa exchange data items (i.e. migrate or replicate them) based
on their expected query rate and their processing cost. The data
items are exchanged based on their expected values using combi-
natorial auctions, where winner determination is tricky and syn-
chronization is required. In our approach, asynchronous individual
decisions are taken by data items regarding replication, migration
or deletion, so that high availability is preserved and dynamic load
balancing is performed. Also, in [26], a cost model is defined for
the factors that affect data and application migration for minimizing

latency in replying queries. Data is migrated towards the applica-
tion or the application towards the data based on their respective
costs that depends on various aspects, such as query load, replicas
placement and network and storage availability.

On the other hand, in the Mungi operating system [14], a com-
modity market of storage space has been proposed. Specifically,
storage space is lent by storage servers to users and the rental prices
increase as the available storage runs low, forcing users to release
unneeded storage. This model is equivalent to that of dynamic pric-
ing per volume in telecommunication networks according to which
prices increase with the level of congestion, i.e. congestion pricing.
Occupied storage is associated to specific objects that are linked to
bank accounts from which rent is collected for the storage. This ap-
proach does not take into account the different query rates for the
various data items and it does not have any availability objectives.

In [15], an approach is proposed for reorganizing replicas evenly
in case that new storage is added into the cloud, while minimizing
data movement. Relocated data and new replicas are assigned with
higher probability to newer servers. Replication process randomly
determines the locations of replicas, while preserving that no repli-
cas are placed in the same server. However, this approach does
not consider geographical distribution of replicas or differentiated
availability levels to multiple applications, and it does not take into
account popularity of data items in the replication process.

In [19], an approach has been proposed for optimally selecting
the query plan to be executed in the cloud in a cost-efficient way
considering the load of remote servers, the latency among servers
and the availability of servers. This approach has similar objectives
to ours, but the focus of our paper is solely on primary-key queries.

In [2] and [8] efficient data management for the consistency of
replicated data in distributed databases is addressed by an approach
guaranteeing one-copy serializability in the former and snapshot
isolation in lazy replicated databases (i.e. where replicas are syn-
chronized by separate transactions) in the latter. In our case, we
do not expect high update rates in a key-value store and therefore
concurrent copy of changes to all replicas can be an acceptable ap-
proach. However, regarding fault tolerance against failures during
updates, the approach of [2] could be employed, so as the replicas
of a partition to be organized in a tree.

10. CONCLUSION
In this paper, we described Skute, a robust, scalable and highly-

available key-value store that dynamically adapts to varying query
load or disasters by determining the most cost-efficient locations
of data replicas with respect to their popularity and their client lo-
cations. We experimentally proved that our approach converges
fast to equilibrium, where as predicted by a game-theoretical model
no migrations happen for steady system conditions. Our approach
achieves net benefit maximization for application providers and
therefore it is highly applicable to real business cases. We have
built a fully working prototype in a distributed setting that clearly
demonstrates the feasibility, the effectiveness and the low commu-
nication overhead of our approach. As a future work, we plan to
investigate the employment of our approach for more complex data
models, such as the one in Bigtable [6].

11. ACKNOWLEDGMENTS
This work was partly supported by the EU projects HYDROSYS

(224416, DG-INFSO) and OKKAM (215032, ICT).

12. REFERENCES
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken,

J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P.
Wattenhofer. Farsite: federated, available, and reliable
storage for an incompletely trusted environment. ACM
SIGOPS Operating Systems Review, 36(SI):1–14, 2002.

[2] D. Agrawal and A. E. Abbadi. The tree quorum protocol: An
efficient approach for managing replicated data. In VLDB
’90: Proc. of the 16th International Conference on Very
Large Data Bases, pages 243–254, Brisbane, Queensland,
Australia, 1990.

[3] P. A. Bernstein and N. Goodman. An algorithm for
concurrency control and recovery in replicated distributed
databases. ACM Transactions on Database Systems,
9(4):596–615, 1984.

[4] N. Bonvin, T. G. Papaioannou, and K. Aberer. Dynamic
cost-efficient replication in data clouds. In Proc. of the
Workshop on Automated Control for Datacenters and
Clouds, Barcelona, Spain, June 2009.

[5] N. Bonvin, T. G. Papaioannou, and K. Aberer. Cost-efficient
and differentiated data availability guarantees in data clouds.
In ICDE ’10: Proceedings of the 26th IEEE International
Conference on Data Engineering, Long Beach, CA, USA,
March 2010.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: a distributed storage system for structured
data. In Proc. of the Symposium on Operating Systems
Design and Implementation, Seattle, Washington, 2006.

[7] M. Dahlin, B. B. V. Chandra, L. Gao, and A. Nayate.
End-to-end wan service availability. IEEE/ACM
Transactions on Networking, 11(2):300–313, 2003.

[8] K. Daudjee and K. Salem. Lazy database replication with
snapshot isolation. In VLDB ’06: Proc. of the 32nd
International Conference on Very large data bases, pages
715–726, Seoul, Korea, 2006.

[9] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: amazon’s highly available
key-value store. In Proc. of ACM Symposium on Operating
Systems Principles, New York, NY, USA, 2007.

[10] C. Dellarocas. Goodwill hunting: An economically efficient
online feedback mechanism for environments with variable
product quality. In Proc. of the Workshop on Agent-Mediated
Electronic Commerce, July 2002.

[11] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file
system. In Proc. of Symposium on Operating Systems
Principles, pages 29–43, Bolton Landing, NY, USA, 2003.

[12] R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and
I. Stoica. The impact of dht routing geometry on resilience
and proximity, 2003.

[13] R. G. Guy, J. S. Heidemann, and J. T. W. Page. The ficus
replicated file system. ACM SIGOPS Operating Systems
Review, 26(2):26, 1992.

[14] G. Heiser, F. Lam, and S. Russell. Resource management in
the mungi single-address-space operating system. In Proc. of
Australasian Computer Science Conference, Perth, Australia,
February 1998.

[15] R. Honicky and E. L. Miller. A fast algorithm for online
placement and reorganization of replicated data. In Proc. of
Int. Symposium on Parallel and Distributed Processing,
Nice, France, April 2003.

[16] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin,
and R. Panigrahy. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In Proc. of ACM Symposium on Theory of
Computing, pages 654–663, May 1997.

[17] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, C. Wells, and B. Zhao. Oceanstore: an
architecture for global-scale persistent storage. SIGPLAN
Not., 35(11):190–201, 2000.

[18] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133–169, 1998.

[19] W.-S. Li., V. S. Batra, V. Raman, W. Han, and I. Narang.
Qos-based data access and placement for federated systems.
In VLDB ’05: Proceedings of the 31st International
Conference on Very Large Data Bases, pages 1358–1362,
Trondheim, Norway, 2005.

[20] W. Litwin and T. Schwarz. Lh*rs: a high-availability
scalable distributed data structure using reed solomon codes.
ACM SIGMOD Record, 29(2):237–248, 2000.

[21] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer. Bayou:
replicated database services for world-wide applications. In
Proc. of the 7th workshop on ACM SIGOPS European
workshop, Connemara, Ireland, 1996.

[22] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends
in a large disk drive population. In Proc. of 5th USENIX
Conference on File and Storage Technologies (FAST ’07),
San Jose, CA, USA, February 2007.

[23] A. Rowstron and P. Druschel. Storage management and
caching in past, a large-scale, persistent peer-to-peer storage
utility. In Proc. of ACM Symposium on Operating Systems
Principles, Banff, Alberta, Canada, 2001.

[24] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: a highly available file
system for a distributed workstation environment.
Transactions on Computers, 39(4):447–459, 1990.

[25] M. Shapiro, P. Dickman, and D. Plainfossè. Robust,
distributed references and acyclic garbage collection. In
Proc. of the Symposium on Principles of Distributed
Computing, Vancouver, Canada, August 1992.

[26] H. Stockinger, K. Stockinger, E. Schikuta, and I. Willers.
Towards a cost model for distributed and replicated data
stores. In Proc. of Euromicro Workshop on Parallel and
Distributed Processing, Italy, February 2001.

[27] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin,
A. Pfeffer, A. Sah, and C. Staelin. An economic paradigm for
query processing and data migration in mariposa. In Proc. of
Parallel and Distributed Information Systems, Austin, TX,
USA, September 1994.

[28] T. Pitoura, N. Ntarmos and P. Triantafillou. Replication,
Load Balancing and Efficient Range Query Processing in
DHTs. In Proc. of Int. Conference on Extending Database
Technology, Munich, Germany, March 2006.

