
Dynamic Cost-Efficient Replication in Data Clouds

Nicolas Bonvin, Thanasis G. Papaioannou and Karl Aberer
School of Computer and Communication Sciences
École Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
Email: firstname.lastname@epfl.ch

ABSTRACT

Hardware failures in current data centers are common partly
due to the higher data scales supported. Data replication is
the common approach for improving availability. However,
mostly static replication approaches have been proposed, i.e.
the number of replicas and their locations are fixed. More-
over, the geographical diversity of data locations has not
explicitly been considered. In this paper, we propose a cost-
efficient replication scheme across data centers that dynam-
ically adapts the number of replicas employed per partition
to the query load, while maintaining availability guarantees
in case of failures. Our approach employs a virtual economy
that is experimentally proved in a simulated environment to
achieve load balancing among data servers at the minimum
cost.

Categories and Subject Descriptors

H.3.2 [Information storage and retrieval]: Information
Storage; H.3.4 [Information storage and retrieval]: Sys-
tems and Software—Distributed systems; H.2.4 [Database
Management]: Systems—Distributed databases; E.1 [Data
Structures]: Distributed data structures; E.2 [Data Stor-
age Representations]: Hash-table representations

General Terms

Reliability, Economics, Design

Keywords

key-value store, geographical diversity, fault tolerance, eco-
nomic model

1. INTRODUCTION
Recent large Web applications make heavy use of dis-

tributed storage solutions in order to be able to scale up.
As data scales up its availability becomes more crucial and
more important, as even reliable hardware may fail. As re-
ported in [13], failures of any type in current data centers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACDC’09, June 19, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-585-7/09/06 ...$5.00.

are frequent, e.g. overheating, power (PDU) failures, rack
failures, network failures, hard drive failures, network re-
wiring and maintenance, etc. Moreover, natural disasters,
e.g. a tornado destroying a complete data center, or vari-
ous attacks (DDoS, terrorism, etc.) may happen. Also, as
[3] suggests, Internet availability varies from 95% to 99.6%.
Geographic proximity significantly affects data availability;
e.g., in case of a PDU failure ∼500-1000 machines suddenly
disappear, or in case of a rack failure ∼40-80 machines in-
stantly go down. However, to the best of our knowledge,
no existing solution ensures that data replicas are located in
different racks, rooms or even data centers. Current systems
usually rely on randomness to diversify the physical server
that hosts the data; e.g. in [14], [9] node IDs are randomly
chosen, so that peers that are adjacent in the node ID space
are geographically diverse with a good probability.

In this paper, we present a reliable key-value storage sys-
tem with a cost-efficient fully distributed replication scheme
that maintains high availability guarantees for the data owner
despite failures leveraging the geographical diversity of the
data servers. The number of data replicas also dynamically
adapts to the query load and the capabilities of the data
servers, so as the total load to be efficiently balanced. To
this end, we define a fine-grained virtual economy where
each data partition chooses to replicate, migrate or delete
itself based on individual optimization objectives. Simula-
tions experiments show that the proposed approach maxi-
mizes the efficient utilization of the system. The rest of the
paper is organized as follows: In Section 2, we present the
global optimization problem that we address. In Section 3,
the key-value data store is presented. In Section 4, we define
our virtual economy to decentralize the problem. In Section
5, we present experimental results on the effectiveness of the
approach, and in in Section 6, we conclude our work.

2. PROBLEM DEFINITION
The data is split into M partitions, where each partition i

has ri distributed replicas. Take that N servers are present
in the data cloud.

2.1 Maximize data availability
The first objective of the data owner is to provide the

highest availability for a partition i, by placing all of its
replicas in a set Ri of different servers. Data availability
generally increases with the geographical diversity of the se-
lected servers. Obviously, the worst solution in terms of data
availability would be to put all replicas at a server with equal
or worse probability of failure than others.

We denote as Fj a failure event at server j ∈ Ri. These
events may be independent to each other or correlated ones.
If we assume without loss of generality that events F1 . . . Fk

are independent and that events Fk+1 . . . F|Ri| are corre-
lated, then the probability a partition i to be unavailable
is defined as follows:

Pr(i unavailable) = Pr(F1 ∩ F2 ∩ . . . ∩ F|Ri|) =

k∏

j=1

Pr(Fj) · Pr(Fk|Fk+1 . . . ∩ F|Ri|)·

Pr(Fk+1|Fk+2 ∩ . . . ∩ F|Ri|) · . . . · Pr(F|Ri|) ,

(1)

if Fk+1 ∩ Fk+2 ∩ . . . F|Ri| 6= ⊘.

2.2 Minimize communication cost
While geographical diversity increases availability, it is

also important to have servers geographically close to each
other, in order to save bandwidth during replication and to
reduce latency in write operations and during conflict reso-

lution for maintaining data consistency. Let
~~L be a M × N

location matrix with its element Lij = 1 if a replica of par-
tition i is stored at server j and Lij = 0 otherwise. Then,
we maximize data proximity by minimizing network costs
for each partition i, e.g. the total communication cost for
conflict resolution of the mesh network of servers where the
replicas of the partition i are stored. In this case, the net-
work cost cn for conflict resolution of the replicas of a par-
tition i can be given by

cn(~Li) = sum(~Li ·
~~NC · ~Li

T
) , (2)

where
~~NC is a strictly upper triangular N × N matrix of

the mean communication cost between any two servers and
sum denotes the sum of matrix elements.

2.3 Minimize real costs
The data owner has to periodically pay the operational

costs of each server where he stores replicas of his data par-
titions. The operational cost of a server is mainly influenced
by the quality of the hardware, the physical hosting price,
the access bandwidth allocated to the server and its storage,
CPU and bandwidth overhead. The data owner wants to
minimize his expenses by replacing expensive servers with
cheaper ones, while maintaining a certain minimum data
availability promised by SLAs to his clients. At the same
time, he wants to minimize latency. The overall optimiza-
tion problem can be formulated as follows:

min ~Li ~c
T + cn(~Li), ∀i

s.t.

1 − Pr(F Li1

1 ∩ F
Li2

2 ∩ . . . F
LiN

N) ≥ th ,

(3)

where ~c is the vector of operational costs of servers with its
element cj being an increasing function of the replicas lo-
cated at server j. F 0

j means that a failure event at server
j is excluded from the intersection and th is a certain min-
imum availability threshold promised by the data owner.
This constrained optimization problem takes 2M·N possible
solutions and it is feasible only for small sets of servers and
partitions.

3. SKUTE: KEY-VALUE STORE
Skute is designed to provide low and guaranteed response

time on read and write operations, to ensure replicas disper-
sion in an economically efficient way and to minimize band-
width consumption as well as latency. The number of data
replicas and their placement are handled by a distributed
cost-aware algorithm. To this end, data replication is dy-
namically adapted to the distribution of query load and to
failures of any kind so as to maintain high data availability.

3.1 Physical node
We take that a physical node (i.e. a server) belongs to a

rack, a room, a data center, a country and a continent. Note,
that even more fine-grained geographical attributes could be
employed. In order to precisely identify its geographical lo-
cation each physical node has a label of the form“continent-
country-datacenter-room-rack-server”. Continents are labeled
with two letters as follows: Africa (AF), Asia (AS), Europe
(EU), North America (NA), South America (SA), Ocea-
nia (OC), Antarctica (AN). Countries are labeled using two
characters according to ISO 3166-1 alpha-2 (http://www.iso.
org/iso/country codes) recommendations. Labels for data
centers, rooms, racks and servers should not contain more
than 3 characters. Thus, a possible label for a server located
in a data center in Berlin may be “EU-DE-BE1-C12-R07-
S34”. Labeling is independent from servers’ hostname or IP
addresses so that it can be possible to easily make scripts
for configuring and starting new physical nodes. This is par-
ticularly useful when running nodes using cloud computing
provider’s architectures. Potential failures or the addition of
new physical nodes are determined by a distributed mem-
bership protocol, such as those in [11].

3.2 Virtual node
Based on the conclusions of [5], Skute is build using a

ring topology and a variant of consistent hashing [8]. Data is
identified by a key (produced by one-way cryptographic hash
function, e.g. MD5) and its location is given by the hash
function of this key. The key space is split into partitions. A
physical node (i.e. a server) gets assigned to multiple points
in the ring, called tokens, in order data and load uniformity
to be improved. A virtual node holds data for the range
of keys in (previous token, token], as in [4]. A physical
node hosts a varying amount of virtual nodes depending on
the query load, the size of the data managed by the virtual
nodes and its own capacity (i.e. CPU, RAM, disk space,
etc.).

3.3 Routing
As Skute is intented to be used for real-time applications,

a query should not be routed through multiple servers be-
fore reaching its destination. Routing has to be efficient,
therefore every server has enough information in its routing
table to route a query directly to its final destination. Skute
could be seen as a zero-hop DHT, similarly to [4]. The rout-
ing table is actively updated using a gossiping protocol when
a virtual node moves to a new physical node, replicates or
commits suicide. This mechanism works well for practical
systems containing a limited number (a few hundreds) of
servers. Moreover, as experimentally proved in 5, almost
no routing table updates are expected in equilibrium with
stable system conditions, i.e if the mean query load and the
number of servers remain fixed.

Only virtual node migrations and suicides may have an
negative impact on routing. First, after a migration the old
physical node updates its routing table, such that requests
for this particular virtual node are directly forwarded to the
new physical node. Second, only one virtual node of the
same partition is allowed to suicide at the same epoch. This
can be achieved employing Paxos distributed consensus al-
gorithm [10] among virtual nodes of the same partition. The
virtual node collectively agreed to commit suicide notifies its
physical node to update its routing table, so as to point to
the locations of the surviving virtual nodes of the partition.

Stale routing tables only increase the number of hops
needed to route a request. A physical node not able to
process a request will forward it to the corresponding node
by looking at its routing table. Note that a query can be
initiated at any physical node. If there is no matching en-
try for the requested virtual node, the request is forwarded
to a random physical node. Eventually, the request will
be forwarded to a physical node with a routing entry for
the requested virtual node and it will reach its final des-
tination. Upon locating the virtual node, all stale routing
entries, which are tracked in the request message in the dis-
covery phase, are restored to the current location of the
node. When the system is in a transient phase, there is
an obvious trade-off between the freshness of routing table
information and the communication cost associated to the
update messages. Also, when new physical nodes join the
network they copy the routing table of another random one.
Upon server failure, the routing table entries associated to
that server are deleted by all nodes. The evaluation of the
effectiveness of this approach for route maintenance is left
for future work.

Table 1: Possible routing table for 3 servers and 5
partitions.

Token range Label of physical node
(0.0-0.2] NA-US-NY2-C01-R02-S12
(0.2-0.4] EU-DE-BE1-C12-R07-S34
(0.4-0.6] EU-CH-GVA-C06-R12-S01
(0.6-0.8] NA-US-NY2-C01-R02-S12
(0.8-0.0] EU-CH-GVA-C06-R12-S01

4. ECONOMIC MODEL
The data owner rents storage space in data servers in

several data centers around the world and pays a monthly
usage-based real rent. Each virtual node is responsible for
the data in its key range and should always try to keep
data availability above a certain minimum level of confidence
while minimizing the associated costs (i.e. latency and cost).
To this end, a virtual node can be assumed to act as an au-
tonomous agent on behalf of the data owner to achieve these
goals. Time is assumed to be split in epochs. At each epoch,
a virtual node may replicate or migrate its data to another
server, or suicide (i.e. delete its data replica). It also pays a
virtual rent, which is defined later in this section and it is a
proxy of the possible real rent, to the server where its data
is stored. These decisions are made based on the query rate
for the virtual node, the renting costs and the maintenance
of high availability upon failures. There is no global coor-
dination and each virtual node behaves independently. The

virtual rent of each server is announced at a board and is
updated at the beginning of a new epoch.

4.1 Board
At each epoch, the virtual nodes need to know the virtual

rent price of the servers. Therefore a server in the network
is elected (i.e. by a leader election distributed protocol) to
store the current virtual rent per epoch of each server. This
centralized approach has a low communication overhead per
epoch, but it requires the elected server to be trusted. An
alternative approach in a non-cooperative setting would be
each virtual node to contact directly each server to get the
updated price. Thus, there is an obvious trade-off between
network efficiency and trust. When a new server is added to
the network, the data owner estimates its confidence essen-
tially based on its hardware components and its location.
This estimation depends on technical factors (e.g. redun-
dancy, security, etc.) as well as non-technicals factors (e.g.
political and economical stability of the country, etc.) and it
is rather subjective. Confidence values of servers are stored
at the board in a trustworthy setting, while they can be
stored at each virtual node in case that trustworthiness is
an issue.

4.2 Physical node
The virtual rent price of a physical node for the next epoch

is an increasing function of its query load and its storage
usage at the current epoch and it can be calculated by the
following simple formula:

virtual rent = up · (storage usage + query load) , (4)

where up is the unit price for marginal usage of the server,
which can be calculated dividing the real rent of the previ-
ous month to the mean usage of the server in the previous
month. The real rent price per server also takes into ac-
count the network cost for communicating with the server.
We can safely assume that the communication cost increases
with the distance of communicating servers. Thus, multiply-
ing up with the query load satisfies the network proximity
objective. The query load and the storage usage at the cur-
rent epoch are considered to be good approximations of the
ones at the next epoch, as they are not usually expected to
significantly change at very small time scales, such as a time
epoch. Note that the virtual rent reflects usage in small time
scales, while the real rent reflects usage on a monthly basis.
They are both dynamic, when the system is at a transient
phase, but they are constant at steady state, as explained
in Section 5.2. The monthly real rent paid by the network
owner influences the virtual rent price such that an expen-
sive server tends to be also expensive in the virtual economy.
A server agent residing at the server calculates per epoch its
virtual rent price.

4.3 Maintaining availability
A virtual node always tries to keep the data availability

above a minimum level th (e.g. 99%) specified by the data
owner, as specified in Section 2. As estimating the probabil-
ities of each server to fail necessitates access to an enormous
set of historical data and private information of the server,
we approximate the potential availability of a virtual node
by means of the geographical diversity of the servers that
host it. Therefore, the availability of a virtual node i is de-

fined as the sum of diversity of each distinct pair of servers,
i.e.:

availi =

|Si|∑

i=0

|Si|∑

j=i+1

confi · confj · diversity(si, sj) (5)

where Si = (s1, s2, . . . , sn) is the set of servers hosting an
instance of the virtual node i and confi, confj ∈ [0, 1] are
the confidence levels of servers i, j. The diversity function
returns a number computed using the geographical distance
among server pairs. This distance is represented as a 6 bits
number, each bit corresponding to the location parts of a
server, namely continent, country, data center, room rack
and server. The most significant bit (leftmost) represents
the continent while the least significant bit (rightmost) rep-
resents the server. Note that more bits should be used to
describe geographical distance in case of more geographi-
cal attributes. Starting with the most significant bit, each
location part of both servers are compared one by one to
compute their similarity: if the location parts are equiva-
lent, the corresponding bit is set to 1, otherwise 0. Once a
bit has been set to 0, all less significant bits are also set to 0.
For example, two servers belonging to the same data center
but located in different rooms cannot be in the same rack,
thereby all bits after the third bit (data center) have to be
0. The similarity number would then look like this:

cont coun data room rack serv
1 1 1 0 0 0

A binary“NOT”operation is then applied to the similarity
to get the diversity value:

111000 = 000111 = 7(decimal)

The diversity between servers are summed because having
n + 1 servers in the same location part is always better in
terms of availability than having only n, as individual servers
may fail as well.

When the availability is below th, a virtual node will repli-
cate its data to a new server. The best candidate server is
selected so as to maximize the net benefit between diversity
of the resulting set of replica locations for the virtual node
and the virtual rent of the new server. Specifically, a virtual
node i with current replica locations in Si maximizes the
formula below:

arg
j

max

|Si|∑

k=1

confj · diversity(sk, sj) − prj , (6)

where prj is the virtual rent price of candidate server j.
The constant th allows a fine-grained control over the repli-
cation process. A low value means that a partition will be
replicated on few servers potentially geographically close,
whereas a higher value enforces many replicas to be located
at dispersed locations. However, setting a high value for the
minimum confidence level in a network with a few servers
can result in an undesirable situation, where all partitions
are replicated everywhere. To circumvent this, a maximum
number of replicas per virtual node are allowed.

4.4 Virtual node decision tree
As already mentioned, a virtual node may decide to repli-

cate, migrate, suicide or do nothing with its data at the end

of an epoch. Upon replication, a new virtual node is associ-
ated with the replicated data. The decision tree of a virtual
node is depicted in Figure 1. First, it verifies that the cur-
rent availability of its partition is greater than th. If the
minimum acceptable availability is not reached, the agent
replicates its data to the server that maximizes net benefit,
as described in Subsection 4.3.

If the availability is satisfactory, the agent tries to mini-
mize costs. During an epoch, virtual nodes receive queries,
process them and send the replies back to the client. Each
query creates a value for the virtual node, which can be as-
sumed to proportional to the size of the query reply. For
this purpose, it employs a balance b defined as follows:

b = popularity − virtual rent , (7)

where popularity is the query load normalized in monetary
units. To this end, a virtual node decides to:

• migrate or suicide: if it has negative balance for the
last f epochs. First, the agent calculates the availabil-
ity of its partition without its own replica. If satisfied,
it suicides, i.e. deletes its replica. Otherwise, the agent
tries to find a cheaper server that could host the replica
of the partition. To avoid that a data replica oscillates
between servers the migration is only allowed if the
following migration conditions apply:

– the minimum availability is still satisfied using the
new server,

– the absolute price difference between the current
and the new server is greater than a threshold,

– the current server storage usage is above a storage
soft limit, typically 70% of the hard drive capac-
ity, and the new server is below this limit.

• replicate: if it has positive balance for the last f epochs,
it may replicate. For replication, a virtual node agent
also has to verify that:

– It can afford the replication by having a positive
balance b′ for consecutive f epochs:

b
′ = popularity − cn − 1.2 · virtual rent

′

where cn is a term representing the consistency
(i.e. network) cost, which can be approximated
as the number of replicas of the partition times a
fixed average communication cost parameter for
conflict resolution and routing table maintenance.
virtual rent′ is the current virtual rent of the
candidate server for replication, while the factor
1.2 accounts for the upper bound 20% increase at
this rent price at the next epoch due to the po-
tentially increased used storage of the candidate
server.

– the average bandwidth consumption bdwr for the
answering queries per replica after replication (left
term of left side of inequality (8)) plus the size of
the partition ps is less than the respective band-
width bdw per replica without replication (right
side of inequality (8)) for a fixed number win of
epochs to compensate for steep changes of the
query rate. A large win value should be used

for bursty query load. That is, replicate if:

win ∗ q ∗ qs

|Si| + 1
+ ps <

win ∗ q ∗ qs

|Si|
, (8)

where q is the average number of queries for the
last win epochs, qs is the average size of the replies,
|Si| is the number of servers currently hosting
replicas of partition i and ps is the size of the
partition.

The virtual node agent finally sets lowest popularity to
the current lowest virtual rent price to prevent unpopular
nodes from migrating indefinitely.

A virtual node getting a large number of queries or having
to process large queries will become wealthier. At the same
time, the load of the corresponding server will increase, as
well as the virtual rent price for the next epoch. Popular
virtual nodes on the server will have enough “money” to
pay the growing rent price, as opposed to unpopular ones
that will have to move to a cheaper server. The transfer
of unpopular virtual nodes will in turn decrease the virtual
rent price, hence stabilizing the rent price of the server. This
approach is self-adaptive and matches the query load by
replicating popular virtual nodes.

Figure 1: Decision tree of the virtual node agent.

5. EXPERIMENTAL RESULTS

5.1 The simulation model
We assume a simulated cloud storage environment con-

sisting of N servers geographically distributed according to
different scenarios that are explained on a per case basis.
Data per application is assumed to be split into M par-
titions each managed by a virtual node. Each server re-

serves fixed bandwidth capacities for replication and migra-
tion per epoch. It also has a bandwidth capacity for serving
queries and a fixed storage capacity. The popularity of the
virtual nodes (i.e. the query rate) is distributed according
to Pareto(1, 50). The number of queries per epoch is dis-
tributed according to Poisson with a mean rate λ, which is
different per experimental setting. For simplicity, the size
of every data partition is assumed to be fixed and equal to
256MB. Time is assumed to be slotted into epochs. At each
epoch, virtual nodes employ the decision making algorithm
of Subsection 4.4. Each server keeps track of its available
bandwidth for migration, replication or answering queries,
and its available storage after any data transfer that is de-
cided to happen within one epoch. All data migrations and
replications are considered to be completed when decided,
as long as the necessary resources suffice. The virtual price
per server is determined according to formula (4) at the be-
ginning of each epoch. The average real rent of a server is
considered fixed but with different values per experimental
setting. Also, we assume that the environment is trustwor-
thy and therefore the confidence assigned to all servers is 1.
The simulation is written in Java.

5.2 Convergence to optimal solution
First, we consider a small scale setting to be able to vali-

date our results solving numerically the optimization prob-
lem of Section 2. Specifically, we consider a data cloud con-
sisting of N = 5 servers dispersed in Europe: two servers are
hosted in Switzerland in separate data centers, one in France
and two servers are hosted in Germany in the same rack of
the same data center. Data is split into M = 50 partitions
that are shared among servers at startup. In the optimiza-
tion problem, we assume that each server has probability to
fail 0.3 and that the failure probabilities of the first three
servers are independent, while those of the Germanian data
centers that are located at the same rack are correlated, so
that Pr[F4|F5] = Pr[F5|F4] = 0.5. The minimum avail-
ability level th is chosen so as to ensure that a partition is
hosted by at least 2 servers located at different data centers,
i.e.: 001000=7 for the simulation model and 90% for the op-
timization problem. Network-related operational costs are
considered dominant factor for the communication cost and
thus distance of servers is not taken into account in decision
making, i.e. cn = 0 in both the simulation model and the
optimization problem. Also, for equivalence to decision pro-
cess of the simulation model, the operational cost c of each
server in formula (3) of the optimization problem is divided
by the popularity of the virtual node. The detailed parame-
ters of the small scale setting of the simulation experiments
are shown at the left column of Table 2.

As depicted in Figure 2, the virtual nodes replicate and
migrate to other servers according to the approach of Sub-
section 4.4 and the system soon reaches equilibrium. At
equilibrium, almost no migrations, replications or suicides
of virtual nodes happen and therefore the virtual and real
rents remain constant for fixed mean query rate and fixed
number of servers. The convergence process actually takes
only about 8 epochs, which is very close to the communica-
tion bound for replication (i.e. total data size / replication
bandwidth = 10GB / 1.5GB per epoch≈ 6.6 epochs). Also,
as revealed by comparing the numerical solution of the op-
timization problem of Section 2 with the one that is given
by simulation experiments, the proposed distributed eco-

Table 2: Parameters of small-scale and large-scale
experiments.

nomic approach solves rather accurately the optimization
problem. Specifically, the total numbers of virtual nodes
were the same and the distributions of virtual nodes per
server were similar.

Figure 2: Small-scale setup : replication process at
startup.

5.3 Server arrival and departure
Henceforth, we consider a more realistic large-scale setting

of M = 100000 partitions and N = 200 servers with differ-
entiated unit prices that belong to two categories: cheap and
expensive. The detailed parameters of this experimental set-
ting are shown at the right column of Table 2. At epoch 100,
we assume that 30 new cheap servers are added to the data
cloud, while 30 cheap servers are removed at epoch 200. As
depicted in Figure 3, our approach is very robust to resource
upgrading or failures: the total number of virtual nodes re-
mains constant after adding resources to the data cloud and
increases upon failures to maintain availability guarantees
above the desired level.

5.4 Variations in the query load
Next, to show the adaptability of the store to the query

load, a load peak similar to what would result with the slash-
dot effect (http://en.wikipedia.org/wiki/Slashdot effect) is sim-
ulated: in a short period the mean query rate λ gets multi-

Figure 3: Large-scale setup : robustness against up-
grades and failures.

plied by 30. Hence, the mean number of queries per epoch
increases from 3000 to 90000 within 25 epochs and then
slowly decreases during 250 epochs to the normal rate of
3000 queries per epoch. Then, at epoch 375 the same query
load pattern is repeated: the mean query rate rapidly in-
creases for 25 epochs and then it gradually decreases for 250
epochs. According to Pareto distribution, a small amount
of virtual nodes attract a large amount of queries. These
virtual nodes become “wealthier” thanks to their high popu-
larity, and they are able to replicate to one or several servers
in order to handle the increasing load. Therefore, the total
amount of virtual nodes dynamically adjusts to the query
load, as depicted in Figure 4. More importantly, the query
load per server always remains quite balanced despite the
variations in the total query load, as depicted in Figure 5.
Specifically, the variance of the query load per server is
minimal when the mean total query rate is steady and it
has a decreasing trend when the system query load changes
smoothly (e.g. between epochs 125 and 375). Also, as de-
picted in Figure 6, the average virtual rent price per server
per epoch has a very small variance. The query load is well
balanced among servers, as shown by the minimal impact
of the load peaks to the average server virtual rent price in
Figure 6. Therefore, our approach performs load balancing
and utilizes the resources of the cloud in a cost-efficient way.

Figure 4: Large-scale setup : total amount of virtual
nodes in the system over time.

Figure 5: Large scale setup : query load per server
over time.

Figure 6: Large scale setup : average virtual rent
per server per epoch (1 minute).

6. RELATED WORK
Dealing with network failure, strong consistency and high

data availability can not be achieved at the same time, ac-
cording to [2]. High data availability by means of replication
has been investigated in various contexts, such as P2P sys-
tems [14, 9], data clouds, distributed databases [12, 4] and
distributed file systems [6, 15, 1]. However, in all these sys-
tems, replication is employed in a static way, i.e. the number
of replicas and their locations are predetermined. Also, no
replication cost considerations are taken into account and
no geographical diversity of replicas is employed. We have
already mentioned that we share two common character-
istics with Dynamo [4], namely zero-hop routing and the
notion of virtual nodes. However, Dynamo deals with load
balancing by assuming the uniform distribution of popular
data items in data partitions. Instead, our approach deals
with load balancing for dynamic changes of query load in a
cost-effective way.

Some economic-aware approaches are dealing with the op-
timal locations of replicas. Mariposa [17] aims at latency
minimization in executing complex queries over relational
distributed databases, i.e. not primary-key access queries
on which we focus. Sites in Mariposa exchange data items
(i.e. migrate or replicate them) based on their expected
query rate and their processing cost. For the exchanges,
combinatorial auctions are employed where winner determi-
nation is tricky, as opposed to our straightforward decision
making approach. Also, in [16], a cost model is defined for
the factors that affect data and application migration for

minimizing latency in replying queries. Data is migrated
towards the application or the application towards the data
based on their respective costs that depends on various as-
pects, such as query load, replicas placement and network
and storage availability. On the other hand, in the Mungi
operating system [7], a commodity market of storage space
has been proposed. Specifically, storage space is lent by
storage servers to users and the rental prices increase as the
available storage runs low, forcing users to release unneeded
storage. This model is equivalent to that of dynamic pricing
per volume in telecommunication networks increasing prices
with the level of congestion, i.e. congestion pricing. How-
ever, this approach does not take into account the different
query rates for the various data items and it does not have
any availability objectives.

7. CONCLUSION
In this paper, we described Skute, a robust, scalable and

highly-available key-value store that dynamically adapts to
varying load or disasters determining the most cost-efficient
positions of data replicas. As a future work, we intend to
implement a fully working prototype and investigate several
other aspects, such as dynamic server prices, untrustworthy
servers, competitive virtual nodes belonging to multiple data
owners and data integrity and privacy.

8. REFERENCES

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,
R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,
M. Theimer, and R. P. Wattenhofer. Farsite:
federated, available, and reliable storage for an
incompletely trusted environment. ACM SIGOPS
Operating Systems Review, 36(SI):1–14, 2002.

[2] P. A. Bernstein and N. Goodman. An algorithm for
concurrency control and recovery in replicated
distributed databases. ACM Transactions on Database
Systems, 9(4):596–615, 1984.

[3] M. Dahlin, B. B. V. Chandra, L. Gao, and A. Nayate.
End-to-end wan service availability. IEEE/ACM
Transactions on Networking, 11(2):300–313, 2003.

[4] G. Decandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: amazon’s highly available key-value store. In
Proc. of ACM Symposium on Operating Systems
Principles, New York, NY, USA, 2007.

[5] R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker,
and I. Stoica. The impact of dht routing geometry on
resilience and proximity. In Proc. of ACM SIGCOMM,
Karlsruhe, Germany, August 2003.

[6] R. G. Guy, J. S. Heidemann, and J. T. W. Page. The
ficus replicated file system. ACM SIGOPS Operating
Systems Review, 26(2):26, 1992.

[7] G. Heiser, F. Lam, and S. Russell. Resource
management in the mungi single-address-space
operating system. In Proc. of Australasian Computer
Science Conference, Perth, Australia, February 1998.

[8] D. Karger, E. Lehman, T. Leighton, M. Levine,
D. Lewin, and R. Panigrahy. Consistent hashing and
random trees: Distributed caching protocols for
relieving hot spots on the world wide web. In Proc. of

ACM Symposium on Theory of Computing, pages
654–663, May 1997.

[9] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: an architecture for global-scale persistent
storage. SIGPLAN Not., 35(11):190–201, 2000.

[10] L. Lamport. Processor membership in asynchronous
distributed systems. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[11] L. Moser, P. Melliar-Smith, and V. Agrawala.
Processor membership in asynchronous distributed
systems. IEEE Transactions on Parallel and
Distributed Systems, 5(5):459–473, 1994.

[12] K. Petersen, M. Spreitzer, D. Terry, and M. Theimer.
Bayou: replicated database services for world-wide
applications. In Proc. of the 7th workshop on ACM
SIGOPS European workshop, Connemara, Ireland,
1996.

[13] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure
trends in a large disk drive population. In Proc. of 5th
USENIX Conference on File and Storage Technologies
(FAST ’07), San Jose, CA, USA, February 2007.

[14] A. Rowstron and P. Druschel. Storage management
and caching in past, a large-scale, persistent
peer-to-peer storage utility. In Proc. of ACM
Symposium on Operating Systems Principles, Banff,
Alberta, Canada, 2001.

[15] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, and D. C. Steere. Coda: a
highly available file system for a distributed
workstation environment. Transactions on Computers,
39(4):447–459, 1990.

[16] H. Stockinger, K. Stockinger, E. Schikuta, and
I. Willers. Towards a cost model for distributed and
replicated data stores. In Proc. of Euromicro
Workshop on Parallel and Distributed Processing,
Italy, February 2001.

[17] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin,
A. Pfeffer, A. Sah, and C. Staelin. An economic
paradigm for query processing and data migration in
mariposa. In Proc. of Parallel and Distributed
Information Systems, Austin, TX, USA, September
1994.

