
Evaluation of Scheduling Policies in a Staged-Database
System

[Course Project Report: Advances in Data Management Systems]
∗

Nicolas Bonvin
LSIR,EPFL

nicolas.bonvin@epfl.ch

Rammohan Narendula
LSIR,EPFL

rammohan.narendula@epfl.ch

Surender Reddy Yerva
LSIR,EPFL

surenderreddy.yerva@epfl.ch

ABSTRACT
Traditional database systems execute queries using one query
multiple operators approach. Such systems do not cash on
the common data or computation which could be used by
multiple queries. Thus leading to poor performance. To
overcome these deficiencies, Staged-DB approach has been
proposed, where the philosophy is one operator multiple queries.
A Staged-DB system splits a traditional DBMS into a num-
ber of stages and handles a stage independently. In this
project we evaluate the performance of a Staged-DB system
under different scheduling policies. Our study is limited to
scheduling various components that constitute the execu-
tion stage of a Staged-DB. We evaluate different schedul-
ing policies that fix the order in which various operators in
the execution stage should be executed. We demonstrate
the performance of the policies in terms of response time,
throughput, and memory consumption.

General Terms
Database management systems

Keywords
databases, performance, scheduling, simulations, stages

1. INTRODUCTION
Query execution in database involves multiple steps. First
the query is parsed and then the query optimizer produces
an optimized query execution plan, based on the parsed tree
and statistics available in the system catalog. This query
execution plan is nothing but a tree of operators. In tradi-
tional database systems the execution engine based on the
query execution plan loads and executes the corresponding
operators. Here we see that a single query needs multiple
operators. This kind of systems referred to as one query
multiple operators perform well if there were only a single

∗A soft copy of this paper is available at
http://lsirpeople.epfl.ch/narendul/adb/adb.html

query in the system at a given time. For multiple queries in
the system, each query would have its own query execution
plan and thus its own list of operators. Here each query
would be executed as if it was the only query in the system.
In such multi-query scenarios some of the operators in the
query plans could be overlapping, by which we mean they
refer to the same data and produce similar results. The tra-
ditional database systems fail to exploit this commonality.

On contrary to ”one query multiple operators”methodology,
Staged-DB [2] proposes a new methodology referred to as
one operator multiple queries. Here the whole system main-
tains the n-operators [3] unlike in the previous approach
where each query maintains the required operators. The
multiple query demands are queued into these n-operators.
In effect an operator contains all the query requests, thus the
operator is in a good position to detect if multiple queries
need similar data. The gain is very significant if the common
requests refer to disk related activities.

In many decision making systems the amount of overlap be-
tween the different queries is significant. In TPC-H bench-
mark queries, which is for decision systems, this overlap is
indeed very significant.

In such Staged-DB systems, query execution component of
the traditional DBMS constitutes a single stage. The current
study aims at different ways of scheduling [1] the various
operators in this stage. The rest of the paper is organized
as follows- in Section 2, various scheduling alternatives are
discussed. In Section 3, a detailed description of the system
implementation is provided. In Section 4, the performance
analysis is presented. We present the scope for the future
work in Section 5 and we conclude in Section 6.

2. RELATED WORK
The Staged-DB concept was first proposed in [3]. The work
considered the need for a Staged approach in DBMS sys-
tems. The work emphasises more on scheduling among stages
of the system and did not consider in detail, the schedul-
ing with in a single stage. Several scheduling policies for
scheduling among stages were proposed in [2]. The proposed
solutions were experimented on real-time DBMS. They did
not consider the scheduling with in a stage, namely the Ex-
ecution stage of the Staged-DB. In this project, we are deal-
ing with this problem and first time, building a simulation
environment for the purpose.

3. SCHEDULING THEORY
3.1 Scheduling Policies
The staged-db execution model contains several µEngines,
and each micro engine corresponds to an operator in a query
execution plan. Every micro engine contains an input queue
where the input request packets are placed.

The staged-db has several micro engines. On a single CPU,
at any point of time, only one of the operators should be
executing. The scheduler, based on the scheduling policy,
decides which micro engine should be executing next.

In our current research project, we will be considering the
following different kinds of scheduling policies

1. Round-Robin Scheduling

2. Heavy-Load First Scheduling

3. Light-Load First Scheduling

3.1.1 Round-Robin Scheduling
In this policy the system keeps track of available µEngines.
This scheduler schedules one µEngine after another accord-
ing to the order of engines present in the list. Each µEngine
will be given fixed (pre-decided) amount of CPU slice. At
the end of the CPU slice the µEngine will yield the CPU to
the next µEngine.

3.1.2 Heavy-Load First Scheduling
Each µEngine has a queue for input requests. The load of
a µEngine will be defined by the engine. This could be the
number of packets in the µEngine’s queue or also weighing
the queue length by the cost involved in using the µEngine.
So, every µEngine has a load factor which varies as the num-
ber of requests vary. Now the system has the information of
all available µEngines and the corresponding loads. We sort
all the engines based on the load and pick the engine which
has the highest load and schedule it. The amount of CPU
slice allocated to this chosen µEngine will be proportional
to the engine’s load.

Now we have two choices in choosing which engine should
be scheduled next:

1. Sort the engines’ list again and choose the heaviest load
first. In this case, we are trying to give as much CPU as
possible to the heavily loaded engine. However, there
is a possibility of starvation for some operators in this
model.

2. In Second choice, we can avoid this starvation by sort-
ing the engines’ list only when each of the operator has
got CPU for some time. We sort all the engines in de-
scending order based on the load and then round-robin
through the all engines, when all the engines have got
the CPU then we sort the engines again.

3.1.3 Light-Load First Scheduling
This scheduling policy is similar to the Heavy-Load First
scheduling policy, however the only difference is we choose
the lightest loaded µEngine for scheduling. The philosophy

is- we are giving preference to a µEngine which can complete
its work at the earliest. It is similar to Shortest Job First
scheduling in the case of operating systems.

4. SYSTEM DESIGN AND IMPLEMENTA-
TION

The staged database system is modeled using the discrete
event simulation technique. All the computations, data
needs, and dependencies are modeled using events in the
system.

4.1 Design of the modeling
In the section, we deal with the details of the modeling. The
system maintains a global system level event queue called
sysQ . There is a system level scheduler called sysSched

which schedules the events in the sysQ. Each event has a
start time called firingTime and at this time the event
said to be fired . The sysSched just schedules the events in
the sysQ in the order of their firingTime - the event with
earliest eventStart is fired before other events. A clock is
assumed to be associated with the system to time the various
timing requirements of the events. Each event has a certain
computation to be performed which is explained in detail
later.

The system modeling consists of the following components,
each of which is implemented in Java. All the components
are losely coupled and communicate with each using various
events, as discussed later in this section.

4.2 Components of the system
The entire execution engine modeling is realized using the
following system components.

1. Global System Queue- which maintains the sysQ de-
scribed above.

2. Dispatcher- to initiate the first packet of the newly
arrived query.

3. Operator/ µEngine- deals with all the logic related to
an operator.

4. Global Scheduler- schedules various operators for exe-
cution.

5. Main Memory- keeps track of pages fetched from the
disk and the result pages produced by the engines.

6. Overlap Detector- detects possible overlaps across queries
for computation needs or disk fetches.

A detailed description of each of the components is given in
the following.

4.2.1 Global System Queue
All the event related needs of the various system compo-
nents are addressed by this queue. When an event fires, the
responsible component dequeues the event and processes it.
Based on the execution logic, it may insert a new event
into the queue. The flow of various events and the logic is
explained in detail in respective components. Each event
always carries the following piece of data which aids for re-
spective components’ execution logic to proceed.

• eventId- to uniquely identify an event in the whole
system. Through out the report, a sample event is
referred as Q1.J1.1 which is interpreted as the first
event for J1 node of query Q1.

• componentId- the component id for which it is ad-
dressed.

• functionId- this id helps the component to choose one
of the functional logic blocks it consists of. For exam-
ple, as discussed later in this section, a operator is di-
vided into several functional blocks like insert and ex-
ecution. This functionId helps the operator instance
to choose one of the blocks to process with.

• firingTime- the Global System Queue processor (sysSched)
picks the event at this specified time and invokes the
corresponding component based on the componentId

and the control is transferred to the component.

• packet- which contains various data and metadata that
helps a component’s functional logic to proceed. A
packet contains the following information items

1. queryIdList- list of queries associated with this
packet. For example, for a packet destined for
table scan operator, this list can be interpreted as
the list of queries that requested that table scan.

2. queryPlans and queryNodes- corresponding to the
queries present in the queryIdList.

3. pageId- information relating to page requests cor-
responding to disk pages or output pages of com-
putations. All the data and computation gran-
ularities are modeled at page level as described
later.

4. contextInfo/ statusInfo- the component anno-
tates the packet with some status information as
to what extent the packet was processed so far. It
can have a single flag to find whether this packet
is already processed and a request to the child’s
output is sent or not.

The kind of events various components insert into this queue
are explained in detail in the respective sub sections.

4.2.2 Dispatcher
Based on the query arrival pattern specific to certain sim-
ulation setting, this component schedules the next query.
It picks the query plan and schedules the first event corre-
sponding to the root node of the query plan. For instance,
if the query plan has root node as a Join operator, it inserts
event Q1.J1.1 into the Global System Queue. When the cor-
responding component picks up the event, it takes care of
event generation for the rest of the query plan. Each query
plan is in the form of a tree converted into string represen-
tation.

4.2.3 µEngine
This component forms the core of our DBMS system mod-
eling. Each query visits a set of µEngines in its life time
for various computation and data needs. The order depends
on the policy of the current scheduler. A query’s execution
begins basically after the corresponding first event inserted

by dispatcher is fired. The system model at the moment,
supports the following µEngines.

1. Join

2. Aggregation

3. Sort

4. WScan (Wait-and-Scan)

5. Scan

6. IndexScan

Each µEngine is configured with the following parameters.

• Unit CPU Time (UCT)- which is assumed to be the amount
of CPU time needed to finish unit of work by the
corresponding µEngine. The unit of work for each
µEngine varies from one engine to the other, which
is explained further when a detailed description of in-
dividual µEngines is provided.

• Unit Disk IO Time (UDT)- which is the time needed
to access the disk for the unit of work it performs dur-
ing UCT amount of time.

• Input Packet Queue- holds various packets destined
to the µEngine.

µEngine computations are modeled at page level. What
it means is, in this model, a µEngine corresponding to a
parent node in the query plan can execute when at least
one page of each direct child are available in memory. This
logic may vary depending on the internal functional logic
of individual µEngines. With out loss of generality, this
page level modeling can be assumed as tuple level modeling
also. All the above µEngines are discussed in detail in the
following.

1. Join: this Join µEngine basically implements the Nested
Loop Join algorithm. With the page level modeling se-
mantics, it waits for a single page of the outer relation
and all pages of inner relation. Once the correspond-
ing pages are ready in memory, it produces its output
pages. The number of output pages is computed based
on the selectivity parameter, which is an extra con-
figuration parameter for this µEngine in addition to
the general configuration parameters specified above.
When a packet is processed, it either sends requests
to the children, if the packet is processed for the first
time, or updates the statusInfo. The statusInfo

represents what child’s pages are requested for, before
and what are ready in the memory at the moment.

The Join µEngine processes one single packet from the
engine’s input queue in one UCT amount of time. The
UDT is set to zero for this engine, since it does not deal
with disk accesses directly. It always accesses the disk
via the scan engine.

2. Aggregation: The µEngine computes some kind of
aggregate value (like sum, product) on all the pages of
the child at once. When a packet is picked first time
for processing, it sends a request packet to the child for
all of its pages. Later on, it polls the memory for those
pages. When all the child pages are ready, it consumes
them and computes the aggregate in one shot.

The Aggregation µEngine processes one single packet
in UCT amount of cpu time and its UDT is set to zero.

3. Sort: This µEngine waits for all the pages of the child
and consumes them in one shot. It is assumed that a
sorted table with an equal number of pages is created
and written to disk. So any parent µEngine in the
query plan has to read that table to enjoy the output
of the sort µEngine. The WScan µEngine is designed
for this purpose.

In UCT time, the µEngine, processes a single packet
of the queue. If a request for this packet is already
sent to the child, a check is performed for whether the
corresponding output pages exist in memory or not. If
yes, it creates the sort table. In UDT, it writes a single
page of this sorted table to the disk. So the sorted
output is ready after the size of the table’s amount of
UDT time units of the system time.

4. WScan: A WScan’s child is always an instance of Sort

µEngine. When a packet is processed and the child
(Sort) is requested, a randomly generated unique ta-
ble name is sent to the child. When Sort finishes its
execution, it creates a table with this table name. So
the WScan polls for the existence of this table. When
the table is available, it sends a request to the Scan

µEngine to scan the table.

In UCT amount of time, it processes a single packet
and either schedules a request to the Scan µEngine or
a Sort µEngine. The UDT is set to zero.

5. Scan: The Scan µEngine picks a packet and sched-
ules disk reads for the table requested in the packet.
In UCT amount of time, it can place a request for a
single page fetch from disk. And this page appears in
memory after UDT amount of time. Hence a table read
needs number of pages in the table times of UCT+ UDT.
The Scan engine uses Linear Overlap Detector for
detecting overlaps in the input packet requests which
is explained later.

6. IndexScan: this engine has the same semantics as of
the Scan µEngine except for the overlap detection used
is Spike Overlap Detector which is explained in later
part of the report.

Each µEngine implements the following functional logic blocks.

1. Insert- A packet is inserted into the packet queue,
when a parent node needs the node’s output pages.
The overlap detector is called for, at this moment to
detect any possible overlapping.

2. Execution Begin- This block takes care of the whole
execution logic of the µEngine. This block consumes
the UCT and UDT units.

3. Execution End- At the end of the allocated cpu slice,
this block is executed which inserts an event corre-
sponding to the scheduler into the sysQ.

4.2.4 Global Scheduler
This component fixes the order of the execution of the vari-
ous µEngines. It implements various scheduling policies de-
scribed in the previous section. To start with, the sysQ con-
tains a single instance of the Global Scheduler event. Later,
the µEngine which is scheduled inserts the next event for
the scheduler into the queue.

4.2.5 Main Memory
This component simulates the memory manager of the real-
time DBMS system. It addresses the various memory page
requirements of the other components. When a query gener-
ates an output corresponding to an input packet in the input
packet queue, it inserts a new page into the memory. The
page description carries the same information as the packet
description. The module provides the following interfaces

• putPage()

• pageExists()

• consumePage()

The pages are pinned and unpinned as overlaps detected by
the overlap detector and the pages consumed, respectively.
When no pins exist on a page, the page is deleted from the
memory.

4.2.6 Overlap Detector
This component tries to detect various overlaps in the packet
requests and creates a single packet for all the overlapped
queries. The system now captures overlaps only in the Scan

and IndexScan µEngine packets. Overlap detection in other
components is complicated and needs a detailed analysis of
the subtrees to detect common subexpressions. Overlap de-
tection works in two phases

1. Overlaps in Memory- when a packet contains a re-
quest for scanning a page of a table and the page is
already present in the memory, the packet’s request
is not sent to the disk. Instead, the page in memory
is pinned and the µEngine which requested this page
scan sees the page in memory the same way as it was
fetched by disk read. It consumes the page as usual.

2. Overlaps in Input Queue- when a packet arrives
with a page scan and a packet with similar request is
already waiting in the input queue, the packet is piggy
backed onto the existing packet. So no new separate
disk scan is scheduled for this packet. When the page
is fetched into the memory, this piggy back information
naturally carried over to the page description.

Two kinds of overlap detection mechanisms are supported
by the system

Figure 1: A high level overview of the system

1. Linear Overlap Detector- For normal unordered ta-
ble scans, the page orders do not matter. Hence an
incoming packet can be piggy backed onto any other
existing page for the same table scan. So a late ar-
riving query can make use of already existing pages
in memory or yet-to-be-scheduled packets in the input
queue. This is linear because the new query can ar-
rive and exploit the old query at any time, of course,
with a little loss of the overlapping. The Scan µEngine
incorporates this overlap detection mechanism.

2. Spike Overlap Detector- For ordered table scans,
index scans, the newly arriving query can overlap with
existing query if and only if the first page of the table
is still in memory or in the input queue. Here the over-
lapping window is limited to the first page itself, unlike
the linear case. The IndexScan µEngine incorporates
this overlap detection mechanism.

A high level overview of the query execution in our model is
presented in Figure. 1.

5. PERFORMANCE STUDY
We performed a detailed performance study of all the schedul-
ing algorithms.

5.1 Simulation model
There are two kinds of simulation possible as per the avail-
ability of memory resources is concerned. We can assume
availability of memory is limited and reject all the incom-
ing queries once we are out of memory. The other way is
assuming availability of enough memory to satisfy all the
incoming queries and observing which policy is consuming
lesser memory. We adopt the latter in the model.

We have hard coded 10 sample query plans involving the said
µEngines given in Section 3.2.3. The queries are selected
with uniform distribution and introduced into the system

with a fixed inter arrival time. We vary this inter arrival time
and measure various performance metrics presented in next
subsection. A maximum time limit on the system execution
is set (50000 time units in this case) and we take the metrics
at the end of this time. Each setting is simulated for 5 runs
and each point in the graphs is an average of these 5 runs.
We assumed the database consisting of 3 tables with number
of pages 10, 15, 20 and the index scans are also available on
the tables. The respective engines are configured with the
following values in the simulation setting.

• For Scan µEngine, UCT = 1, UDT = 10

• For IndexScan µEngine, UCT = 1, UDT = 10

• For WScan µEngine, UCT = 5, UDT = 0

• For Sort µEngine, UCT = 15, UDT = 0

• For Join µEngine, UCT = 10, UDT = 0

• For Aggregate µEngine, UCT = 2, UDT = 0

5.2 Performance metrics
The following performance metrics were introduced to com-
pare the performance of the policies.

• Mean Response Time: the time needed to produce the
first page as the output. This metric rightly captures
various interactive querying systems where the time
for first output is important.

• Throughput: number of queries completed in a unit
of time. The Completion Time of a query is the time
needed to finish the query execution. It is measured as
difference between the time at which the last output
page is produced and the time when the query arrived
into the system.

• Maximum Memory Consumption: the maximum num-
ber of pages consumed in memory during the life time
of the query.

5.3 Results and analysis
5.3.1 Explanation of Legends
We have experimented with Round Robin scheduling policy
in two modes- one where the slice is limited to processing
just one packet (slice = UCT) and one where a fixed slice of
25 is given (slice = 25 UCT). The first mode is represented
with RR 0 and the latter with RR 1. Every policy is studied
with both overlapping enabled (represented with a ’1’ in the
legends) and disabled (represented with a ’0’). The Highest
Load First policy has a parameter referring to the percentage
of the queue processed during its slice. HL 50 0 refers to
50% case with overlapping disabled. The same applies to
other legends. LL refers to the Light Load First policy.

5.3.2 Analysis of results
Figures 2-4 capture the performance variations of the poli-
cies with overlap detection enabled and disabled. Figure
5-7 demonstrate the performance only for overlapping case.
The following observations are made from the graphs. The
curves we are referring to are straightforward to locate on
the graphs.

1. Mean Response Time of RR 0 1 is much better com-
pared to RR 1 1. This difference varies with a mag-
nitude of 1.5 to 2. This is because in case of the for-
mer, the packets are processed very slowly. So the
overlapping factor increases significantly as the new
queries simply piggy back on existing packets. So
many queries data needs are satisfied with a single
packet processing.

2. Mean Response Time of RR 0 0 is much more than
RR 1 0. This is because only one packet is processed
in a slice in the former case. So Scan µEngine can not
satisfy page requests fast. In the latter case, more page
requests are sent to disk in one slice and data needs
are satisfied very fast.

3. To summarize, when overlapping is enabled, we must
delay processing packets in a graceful way so that more
overlapping is possible. And more queries get benefitted
by avoiding duplicate page fetches or computations. At
the same time, this delaying should not be too high to
make queries waiting for longer times. This makes a
really an interesting future study.

4. Mean Response Time of HL 50 0 is almost same as for
HL 50 1 and growing linearly with the query arrival
rate. It is because half of the queue is cleared in every
slice and there is lesser opportunity for overlap detec-
tor to catch overlaps. Since the current µEngines do
not have a local scheduling policy, packets which are
waiting for their children output might be processed
all the time and wasting the UCT units. As a result,
the response time increases. But for HL 100 0 case,
all of the Scan µEngine’s packets are also processed in
one slice. Hence, results in faster page fetches which in
turn, result in quicker execution of the queries. So the
response time drops significantly and the curves are al-
most linear just above the X-axis. Here the HL 100 1
case has slight advantage over HL 100 0 when the query
arrival is small. But later, there is no effect of overlap-
ping.

5. To summarize, for HL, the percentage configuration
metric is crucial. We need to tune it, in such a way
it does not hurt overlap detector and at the same time
gets fine tuned response time. This study also reveals
the need for a local scheduling policy. Only fresh pack-
ets should be processed compared to the packets waiting
for the children. Current design did not consider this.

6. The performance of Light Load First is observed to be
the same as High Load First policy. It is because the
number of µEngines we implemented are few. It will be
interesting to study them in a better implementation
environment. The curves are not presented in the plots
for clarity reasons.

7. Maximum Memory Consumption- RR 0 0 consumes more
than RR 1 0 because pages are kept in memory till
the time they are consumed. In the latter case, more
packets are picked for processing, hence more pages
are consumed in one slice. This is even worse in the
case of overlapping case. RR 0 1 consumes even more
compared to RR 0 0. It is because, in case of over-
lapping, pins still exist on pages unless all the queries

500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

ArrivalRate(Mean InterArrival TimeUnits)

M
e

a
n

R
e

sp
o

n
se

T
im

e
(T

im
e

U
n

its
)

MeanResponseTime VS ArrivalRate

RR−0−0
RR−1−0
RR−0−1
RR−1−1
HL−50−0
HL−100−0
HL−50−1
HL−100−1
LL−50−0
LL−100−0
LL−50−1
LL−100−1

Figure 2: MeanResponseTime- with and without

overlap detection- ’0’ for non-overlapping case and

’1’ for overlapping case

which need them consume the pages, resulting in un-
pinning. RR 1 1 consumes lesser than RR 0 1 as more
pages are consumed in the former case. HL 50 1 con-
sumes more than HL 50 0 because of overlapping ef-
fect. HL 100 1 less than HL 50 1 because of more
page consumptions in one slice.

8. Throughput RR 0 0 has much lesser throughput than
RR 0 1, because overlapping results in quicker page
fetches for all the overlapped queries. With in over-
lapping case, RR 0 1 has much lesser throughput than
RR 1 1, because the latter processes the packets in big
chunks in a single slice. HL 100 0 has a lot better
throughput over HL 50 0 for same reasons. HL 100 1
has much better throughput than HL 100 0 for over-
lapping reasons.

After clearly showing the merits of the overlapping case over
non-overlapping case, we now try to study the performance
of the policies with overlap enabled but different parameter
configurations of the policies. Figures 5 to 7 demonstrate
this. HL 10 is for the case when 10% of the input queue is
processed when the control is given to the µEngine. HL 50
refers to the 50% case. Figure 5 shows that the RR policy
seems to be performing the best. We need further experi-
mentation to confirm this. The 50% case scores over when
the query arrival rate is more over the 10% case for HL pol-
icy. Figure 6 reveals that the policies may do the same w.r.t
memory consumption. We need further experimentation to
confirm this. The same interpretation can be applied to
Figure 7.

We learnt the following things in the observations

• The performance study clearly shows the need for in-
telligence into the µEngine which can be in the form

500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

ArrivalRate(Mean InterArrival TimeUnits)

M
e

m
o

ry
C

o
n

su
m

p
tio

n
(#

 o
f

p
a

g
e

s)

MemoryConsumption VS ArrivalRate

RR−0−0
RR−1−0
RR−0−1
RR−1−1
HL−50−0
HL−100−0
HL−50−1
HL−100−1
LL−50−0
LL−100−0
LL−50−1
LL−100−1

Figure 3: Memory consumption- with and without

overlap detection- ’0’ for non-overlapping case and

’1’ for overlapping case

500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5
x 10

−3

Th
ro

ug
hp

ut

Throughput VS ArrivalRate

RR−0−0
RR−1−0
RR−0−1
RR−1−1
HL−50−0
HL−100−0
HL−50−1
HL−100−1
LL−50−0
LL−100−0
LL−50−1
LL−100−1

Figure 4: Throughput-with and without overlap

detection- ’0’ for non-overlapping case and ’1’ for

overlapping case

500 1000 1500 2000 2500 3000 3500 4000
0

1000

2000

3000

4000

5000

6000

ArrivalRate(Mean InterArrival TimeUnits)

M
ea

nR
es

po
ns

eT
im

e(
Ti

m
eU

ni
ts

)

MeanResponseTime VS ArrivalRate

RR−0−1
RR−1−1
HL−50−1
HL−100−1
LL−50−1
LL−100−1

Figure 5: MeanResponseTime with overlap detector

500 1000 1500 2000 2500 3000 3500 4000
0

500

1000

1500

2000

2500

ArrivalRate(Mean InterArrival TimeUnits)

M
em

or
yC

on
su

m
pt

io
n(

of

 p
ag

es
)

MemoryConsumption VS ArrivalRate

RR−0−1
RR−1−1
HL−50−1
HL−100−1
LL−50−1
LL−100−1

Figure 6: Memory consumption with overlap detec-

tor

500 1000 1500 2000 2500 3000 3500 4000
0

0.5

1

1.5

2

2.5
x 10

−3

ArrivalRate(Mean InterArrival TimeUnits)

Th
ro

ug
hp

ut

Throughput VS ArrivalRate

RR−0−1
RR−1−1
HL−50−1
HL−100−1
LL−50−1
LL−100−1

Figure 7: Throughput with overlap detector

of local scheduler. This scheduler should process more
relevant packets in its slice than wasting the process-
ing cycles on packets that are waiting for the children
to finish.

• Every µEngine should tune its configuration parame-
ters intelligently to cash the presence of overlapping.
At the same time, it should be realistic and should not
hamper the response times. More study needs to be
done in this regard.

6. FUTURE WORK
We observe the following to be further worked out either
with respect to the system implementation or design.

• Few more interesting global scheduling policies are pos-
sible.

• The system did not consider a local scheduling policy
to pick one packet among many in the input packet
queue, for processing next. It picks the fist packet in
the queue at the moment.

• Regarding implementation, experimentation should be
done with more µEngines and a bench mark style input
queries.

7. CONCLUSIONS
In this research project, we tried to evaluate various schedul-
ing policies for scheduling various operators with in the ex-
ecution block of the DBMS. This implementation provides
a nice platform and further experimentation can be done by
extending various existing components or adding new com-
ponents especially the operators.

8. ACKNOWLEDGMENTS
We thank Anastasia for the invaluable feedback and sugges-
tions throughout the course. We would like to thank Ryan

and Ipokratis for getting us started with the staged-db code
and for providing us the query execution plans.

9. APPENDIX
Links to team members’ websites

• Rammohan- http://lsirpeople.epfl.ch/narendul/adb/adb.html

• Surender- http://lsirpeople.epfl.ch/yerva

• Nicolas- http://lsirpeople.epfl.ch/nbonvin/courses/adms07

10. REFERENCES
[1] Harizopoulos and Ailamaki. Affinity scheduling in

staged server architectures. In Technical
Report-March’02., 2002.

[2] Harizopoulos and Ailamaki. A case for staged database
systems. CIDR’2003.

[3] V. S. Stavros Harizopoulos and A. Ailamaki. Qpipe: A
simultaneously pipelined relational query engine. In
Sigmod’05, 2005.

